skip to main content


Search for: All records

Creators/Authors contains: "Rahmattalabi, Aida"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of learning, from observational data, fair and interpretable policies that effectively match heterogeneous individuals to scarce resources of different types. We model this problem as a multi-class multi-server queuing system where both individuals and resources arrive stochastically over time. Each individual, upon arrival, is assigned to a queue where they wait to be matched to a resource. The resources are assigned in a first come first served (FCFS) fashion according to an eligibility structure that encodes the resource types that serve each queue. We propose a methodology based on techniques in modern causal inference to construct the individual queues as well as learn the matching outcomes and provide a mixed-integer optimization (MIO) formulation to optimize the eligibility structure. The MIO problem maximizes policy outcome subject to wait time and fairness constraints. It is very flexible, allowing for additional linear domain constraints. We conduct extensive analyses using synthetic and real-world data. In particular, we evaluate our framework using data from the U.S. Homeless Management Information System (HMIS). We obtain wait times as low as an FCFS policy while improving the rate of exit from homelessness for underserved or vulnerable groups (7% higher for the Black individuals and 15% higher for those below 17 years old) and overall. 
    more » « less
  2. In the small town of Sitka, Alaska, frequent and often catastrophic landslides threaten residents. One challenge associated with disaster preparedness is access to timely and reliable risk information. As with many small but diverse towns, who or what is a trustworthy source of information is often contested. To help improve landslide communication in Sitka, we used a community-partnered approach to social network analysis to identify (1) potential key actors for landslide risk communication and (2) structural holes that may inhibit efficient and equitable communication. This short take describes how we built trust and developed adaptive data collection methods to build an approach that was acceptable and actionable for Sitka, Alaska. This approach could be useful to other researchers for conducting social network analysis to improve risk communication, particularly in rural and remote contexts.

     
    more » « less