skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raicevic, Nikola"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 26, 2025
  2. As robots operate alongside humans in shared spaces, such as homes and offices, it is essential to have an effective mechanism for interacting with them. Natural language offers an intuitive interface for communicating with robots, but most of the recent approaches to grounded language understanding reason only in the context of an instantaneous state of the world. Though this allows for interpreting a variety of utterances in the current context of the world, these models fail to interpret utterances which require the knowledge of past dynamics of the world, thereby hindering effective human-robot collaboration in dynamic environments. Constructing a comprehensive model of the world that tracks the dynamics of all objects in the robot’s workspace is computationally expensive and difficult to scale with increasingly complex environments. To address this challenge, we propose a learned model of language and perception that facilitates the construction of temporally compact models of dynamic worlds through closed-loop grounding and perception. Our experimental results on the task of grounding referring expressions demonstrate more accurate interpretation of robot instructions in cluttered and dynamic table-top environments without a significant increase in runtime as compared to an open-loop baseline. 
    more » « less