Methionine plays a critical role in various biological and cell regulatory processes, making its chemoproteomic profiling indispensable for exploring its functions and potential in protein therapeutics. Building on the principle of rapid oxidation of methionine, we report Copper(I)-Nitrene Platform for robust, and selective labeling of methionine to generate stable sulfonyl sulfimide conjugates under physiological conditions. We demonstrate the versatility of this platform to label methionine in bioactive peptides, intact proteins (6.5-79.5 kDa), and proteins in complex cell lysate mixtures with varying payloads. We discover ligandable proteins and sites harboring hyperreactive methionine within the human proteome. Furthermore, this has been utilized to profile oxidation-sensitive methionine residues, which might increase our understanding of the protective role of methionine in diseases associated with elevated levels of reactive oxygen species. The Copper(I)-Nitrene Platform allows labeling methionine residues in live cancer cells, observing minimal cytotoxic effects and achieving dose-dependent labeling. Confocal imaging further reveals the spatial distribution of modified proteins within the cell membrane, cytoplasm, and nucleus, underscoring the platform’s potential in profiling the cellular interactome.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Introducing 4-amino-3-thiophenol BODIPY “turn on” probe tunable to NIR wavelengths for monitoring aldehydes in tissues and living organoids by forming dihydrobenzothiazole products with aldehydes, exhibiting a remarkable fluorescence increase.
Free, publicly-accessible full text available March 27, 2025 -
Abstract One-pot multicomponent coupling of different units in a chemoselective manner and their late-stage diversification has wide applicability in varying chemistry fields. Here, we report a simple multicomponent reaction inspired by enzymes that combines thiol and amine nucleophiles in one pot via a furan-based electrophile to generate stable pyrrole heterocycles independent of the diverse functionalities on furans, thiols and amines under physiological conditions. The resulting pyrrole provides a reactive handle to introduce diverse payloads. We demonstrate the application of
Fu ran-T hiol-Amine (FuTine) reaction for the selective and irreversible labeling of peptides, synthesis of macrocyclic and stapled peptides, selective modification of twelve different proteins with varying payloads, homogeneous engineering of proteins, homogeneous stapling of proteins, dual modification of proteins with different fluorophores using the same chemistry and labeling of lysine and cysteine in a complex human proteome. -
Abstract Inspired by the enzyme lysyl oxidase, which selectively converts the side chain of lysine into allysine, an aldehyde‐containing post‐translational modification, we report herein the first chemical method for the synthesis of allysine by selective oxidation of dimethyl lysine. This approach is highly chemoselective for dimethyl lysine on proteins. We highlight the utility of this biomimetic approach for generating aldehydes in a variety of pharmaceutically active linear and cyclic peptides at a late stage for their diversification with various affinity and fluorescent tags. Notably, we utilized this approach for generating small‐molecule aldehydes from the corresponding tertiary amines. We further demonstrated the potential of this approach in generating cellular models for studying allysine‐associated diseases.
-
Abstract Inspired by the enzyme lysyl oxidase, which selectively converts the side chain of lysine into allysine, an aldehyde‐containing post‐translational modification, we report herein the first chemical method for the synthesis of allysine by selective oxidation of dimethyl lysine. This approach is highly chemoselective for dimethyl lysine on proteins. We highlight the utility of this biomimetic approach for generating aldehydes in a variety of pharmaceutically active linear and cyclic peptides at a late stage for their diversification with various affinity and fluorescent tags. Notably, we utilized this approach for generating small‐molecule aldehydes from the corresponding tertiary amines. We further demonstrated the potential of this approach in generating cellular models for studying allysine‐associated diseases.