Density functional theory has been used to elucidate the mechanistic underpinnings of the regeneration of ammonia‐borane (H3B−NH3,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract AB ) from polyborazylene (BxNxHx,PBz ) in the presence of hydrazine (H2N−NH2,Hz ). Herein, borazine (B3N3H6,Bz ) is used as the simplest relevant model ofPBz for the regeneration process. Digestion ofBz usingHz was found to occur by a string of Lewis acid base adduct (between B atoms ofBz andHz molecule) formation andHz assisted proton transfer processes. Later, B−H bonds of HB(NHNH2)2, theBz digested product, are redistributed to form hydrazine‐borane (H3B−NH2NH2,HzB ) and B(NHNH2)3. Redistribution of B−H bonds occurs through hydroboration and concerted proton‐hydride transfer. Another B−H redistributed product, B(NHNH2)3, producesHzB as a result of proton and hydride transfer from cis‐diazene (Dz ), the oxidized product ofHz in presence of O2. -
Abstract. Across the Arctic, vast areas of permafrost are being degraded by climatechange, which has the potential to release substantial quantities ofnutrients, including nitrogen into large Arctic rivers. These rivers heavilyinfluence the biogeochemistry of the Arctic Ocean, so it is important tounderstand the potential changes to rivers from permafrost degradation. Thisstudy utilized dissolved nitrogen species (nitrate and dissolved organicnitrogen (DON)) along with nitrogen isotope values (δ15N-NO3- and δ15N-DON) of samples collectedfrom permafrost sites in the Kolyma River and the six largest Arctic rivers.Large inputs of DON and nitrate with a unique isotopically heavy δ15N signature were documented in the Kolyma, suggesting the occurrenceof denitrification and highly invigorated nitrogen cycling in the Yedomapermafrost thaw zones along the Kolyma. We show evidence for permafrost-derived DON being recycled to nitrate as it passes through the river,transferring the high 15N signature to nitrate. However, the potentialto observe these thaw signals at the mouths of rivers depends on the spatialscale of thaw sites, permafrost degradation, and recycling mechanisms. Incontrast with the Kolyma, with near 100 % continuous permafrost extent,the Ob River, draining large areas of discontinuous and sporadicpermafrost, shows large seasonal changes in both nitrate and DON isotopicsignatures. During winter months, water percolating through peat soilsrecords isotopically heavy denitrification signals in contrast with thelighter summer values when surface flow dominates. This early yeardenitrification signal was present to a degree in the Kolyma, but the abilityto relate seasonal nitrogen signals across Arctic Rivers to permafrostdegradation could not be shown with this study. Other large rivers in theArctic show different seasonal nitrogen trends. Based on nitrogen isotopevalues, the vast majority of nitrogen fluxes in the Arctic rivers is fromfresh DON sourced from surface runoff through organic-rich topsoil and notfrom permafrost degradation. However, with future permafrost thaw, otherArctic rivers may begin to show nitrogen trends similar to the Ob. Ourstudy demonstrates that nitrogen inputs from permafrost thaw can beidentified through nitrogen isotopes, but only on small spatial scales.Overall, nitrogen isotopes show potential for revealing integrated catchmentwide nitrogen cycling processes.more » « lessFree, publicly-accessible full text available January 1, 2024
-
null (Ed.)In this experience report, we describe the accessibility challenges that deaf and hard of hearing users face in teleconferences, based on both our first-hand participation in meetings, and as User Interface and Experience experts. Teleconferencing poses new accessibility challenges compared to face-to-face communication because of limited social, emotional, and haptic feedback. Above all, teleconferencing participants and organizers need to be flexible, because deaf or hard of hearing people have diverse communication preferences. We explain what recurring problems users experience, where current teleconferencing software falls short, and how to address these shortcomings. We offer specific recommendations for best practices and the experiential reasons behind them.more » « less
-
Abstract We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star–black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB.
Free, publicly-accessible full text available September 28, 2024 -
Abstract The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org . The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.more » « lessFree, publicly-accessible full text available July 28, 2024
-
Abstract We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H ( z ), including its current value, the Hubble constant H 0 . Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H ( z ). The source mass distribution displays a peak around 34 M ⊙ , followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H ( z ) measurement, yielding H 0 = 68 − 8 + 12 km s − 1 Mpc − 1 (68% credible interval) when combined with the H 0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H 0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+ , statistically marginalizing over the redshifts of each event’s potential hosts. Assuming a fixed BBH population, we estimate a value of H 0 = 68 − 6 + 8 km s − 1 Mpc − 1 with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H 0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H 0 ) is the well-localized event GW190814.more » « lessFree, publicly-accessible full text available June 1, 2024