skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raju, Ashmita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this demonstration, we will present EVA, an end-to-end AI-Relational database management system. We will demonstrate the capabilities and utility of EVA using three usage scenarios: (1) EVA serves as a backend for an exploratory video analytics interface developed using Streamlit and React, (2) EVA seamlessly integrates with the Python and Data Science ecosystems by allowing users to access EVA in a Python notebook alongside other popular libraries such as Pandas and Matplotlib, and (3) EVA facilitates bulk labeling with Label Studio, a widely-used labeling framework. By optimizing complex vision queries, we illustrate how EVA allows a wide range of application developers to harness the recent advances in computer vision. 
    more » « less
  2. In recent years, deep learning models have revolutionized computer vision, enabling diverse applications. However, these models are computationally expensive, and leveraging them for video analyt- ics involves low-level imperative programming. To address these efficiency and usability challenges, the database community has de- veloped video database management systems (VDBMSs). However, existing VDBMSs lack extensibility and composability and do not support holistic system optimizations, limiting their practical appli- cation. In response to these issues, we present our vision for EVA, a VDBMS that allows for extensible support of user-defined functions and employs a Cascades-style query optimizer. Additionally, we leverage RAY’s distributed execution to enhance scalability and performance and explore hardware-specific optimizations to facilitate runtime optimizations. We discuss the architecture and design of EVA, our achievements thus far, and our research roadmap. 
    more » « less