skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramamurthy, Byrav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 24, 2025
  2. Free, publicly-accessible full text available May 6, 2025
  3. A centralized Software-defined Network (SDN) controller, due to its nature, faces many issues such as a single point of failure, computational complexity growth, different types of attacks, reliability challenges and scalability concerns. One of the most common fifth generation cyber-attacks is the Distributed Denial of Service (DDoS) attack. Having a single SDN controller can lead to a plethora of issues with respect to latency, computational complexity in the control plane, reachability, and scalability as the network scale increases. To address these issues, state-of-the-art approaches have investigated multiple SDN controllers in the network. The placement of these multiple controllers has drawn more attention in recent studies. In our previous work, we evaluated an Entropy-based technique and a machine learning-based Support Vector Machine (SVM) to detect DDoS using a single SDN controller. In this paper, we extend our previous work to further decrease the impact of the DDoS attacks on the SDN controller. Our new technique called Hierarchical Classic Controllers (HCC) uses SVM and Entropy methods to detect abnormal traffic which can lead to network failures caused by overwhelming a single controller. Determining the number of controllers and their best placement are major contributions in our new method. Our results show that the combination of the above three methods (HCC with SVM and Entropy), in the case of a network with 3 controllers provides greater accuracy and improves the DDoS attack detection rate to 86.12% compared to 79.03% and 81.33% using Entropy-based HCC and SVM-based HCC, respectively. 
    more » « less
  4. In optical networks, simulation is a cost-efficient and powerful way for network planning and design. It helps researchers and network designers quickly obtain preliminary results on their network performance and easily adjust the design. Unfortunately, most optical simulators are not open-source and there is currently a lack of optical network simulation tools that leverage machine learning techniques for network simulation. Compared to Wavelength Division Multiplexing (WDM) networks, Elastic Optical Networks (EON) use finer channel spacing, a more flexible way of using spectrum resources, thus increasing the network spectrum efficiency. Network resource allocation is a popular research topic in optical networks. In EON, this problem is classified as Routing, Modulation and Spectrum Allocation (RMSA) problem, which aims to allocate sufficient network resources by selecting the optimal modulation format to satisfy a call request. SimEON is an open-source simulation tool exclusively for EON, capable of simulating different EON setup configurations, designing RMSA and regenerator placement/assignment algorithms. It could also be extended with proper modelings to simulate CapEx, OpEx and energy consumption for the network. Deep learning (DL) is a subset of Machine Learning, which employs neural networks, large volumes of data and various algorithms to train a model to solve complex problems. In this paper, we extended the capabilities of SimEON by integrating the DeepRMSA algorithm into the existing simulator. We compared the performance of conventional RMSA and DeepRMSA algorithms and provided a convenient way for users to compare different algorithms’ performance and integrate other machine learning algorithms. 
    more » « less
  5. In this article, we enhanced the capability of SIMON (Simulator for Optical Networks) by considering the nonlinear effect of the optical network components and different industry network devices. This is achieved by using an optical route planning library called GNPy (Gaussian Noise model in python) as the calculation model within SIMON. SIMON is implemented in C++ and has mainly been used as an optical network learning tool for studying the performance of wavelength-routed optical networks. It measures the network blocking probability by taking into consideration the optical device characteristics. SIMON can capture the most significant impairments when estimating the Bit-Error Rate (BER) but does not consider fiber dispersion and non-linearities. These impairments can be significant when simulating a large-scale network. GNPy, on the other hand, considers those physical impairments and can give a more accurate signal-to-noise ratio (SNR) estimation validated by real-world measurements. By integrating GNPy with SIMON, we are able to set a minimum SNR threshold, which must be satisfied by any call set up in the network. The integration of SIMON and GNPy makes the resulting simulator not only suitable for academic learning but also valuable for real-world network planning, evaluation, and deployment of optical networks. 
    more » « less