skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramesh, Indu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, P, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to P in sublinear time. Since there is evidence that this is impossible for query curves of length Θ(n^α), for any α > 0, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair u,v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the segment and any (u,v)-path in G. The answer is exact, if t = 1, and approximate if t > 1. 
    more » « less
  2. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in ℝ³ consists of three planes that divide the space into 8 octants, such that each open octant contains at most 1/8 of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in ℝ³ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in ℝ³ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of n points in ℝ³ (with prescribed normal direction of one of the planes) in time O^*(n^{5/2}). 
    more » « less