skip to main content

Search for: All records

Creators/Authors contains: "Ramesh, Maya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The potential for creating hierarchical domain structures, or mixtures of energetically degenerate phases with distinct patterns that can be modified continually, in ferroelectric thin films offers a pathway to control their mesoscale structure beyond lattice‐mismatch strain with a substrate. Here, it is demonstrated that varying the strontium content provides deterministic strain‐driven control of hierarchical domain structures in Pb1−xSrxTiO3 solid‐solution thin films wherein two types,c/aanda1/a2, of nanodomains can coexist. Combining phase‐field simulations, epitaxial thin‐film growth, detailed structural, domain, and physical‐property characterization, it is observed that the system undergoes a gradual transformation (with increasing strontium content) from droplet‐likea1/a2 domains in ac/adomain matrix, to a connected‐labyrinth geometry ofc/adomains, to a disconnected labyrinth structure of the same, and, finally, to droplet‐likec/adomains in ana1/a2 domain matrix. A relationship between the different mixed‐phase modulation patterns and its topological nature is established. Annealing the connected‐labyrinth structure leads to domain coarsening forming distinctive regions of parallelc/aanda1/a2 domain stripes, offering additional design flexibility. Finally, it is found that the connected‐labyrinth domain patterns exhibit the highest dielectric permittivity.

    more » « less
  2. Abstract

    The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.

    more » « less