Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We study the stellar distribution around supermassive black holes in gas-rich nuclear star clusters (NSCs). NSCs could contain vast amounts of gas, which contribute significantly to shaping the stellar distribution, typically altering the stellar density cusp from the usual J. N. Bahcall & R. A. Wolf solution and consequently affecting the dynamics in the NSC. The dense gaseous environment in NSCs gives rise to dynamical phenomena that are otherwise rare in other gas-free environments. Here we extend the derivation introduced in J. N. Bahcall & R. A. Wolf to include an additional energy dissipation term associated with gas drag. We examine the effects of different forms of gas drag on the stellar density distribution. Finally, we discuss implications on the rates of tidal disruption events and other transients triggered by stellar interactions in gas-rich galactic nuclei.more » « lessFree, publicly-accessible full text available July 16, 2026
- 
            Abstract Once per ≈104–105yr, an unlucky star may experience a close encounter with a supermassive black hole (SMBH), partially or fully tearing apart the star in an exceedingly brief, bright interaction called a tidal disruption event (TDE). Remnants of partial TDEs are expected to be plentiful in our Galactic center, where at least six unexplained, diffuse, star-like “G objects” have already been detected, which may have formed via interactions between stars and the SMBH. Using numerical simulations, this work aims to identify the characteristics of TDE remnants. We take 3D hydrodynamic FLASH models of partially disrupted stars and map them into the 1D stellar evolution code MESA to examine the properties of these remnants from tens to billions of years after the TDE. The remnants initially exhibit a brief, highly luminous phase, followed by an extended cooling period as they return to stable hydrogen burning. During the initial stage (≲105yr) their luminosities increase by orders of magnitude, making them intriguing candidates to explain a fraction of the mysterious G objects. Notably, mild TDEs are the most common, and result in the brightest remnants during this initial phase. However, most remnants exist in a long-lived stage where they are only modestly offset in temperature and luminosity compared to main-sequence stars of equivalent mass. Nonetheless, our results indicate remnants will sustain abnormal, metal-enriched envelopes that may be discernible through spectroscopic analysis. Identifying TDE survivors within the Milky Way could further illuminate some of the most gravitationally intense encounters in the Universe.more » « lessFree, publicly-accessible full text available August 27, 2026
- 
            Abstract We expand the theoretical framework by O. Gottlieb et al., which connects binary merger populations with long and short binary gamma-ray bursts (lbGRBs and sbGRBs, respectively), incorporating kilonovae (KNe) as a key diagnostic tool. We show that lbGRBs, powered by massive accretion disks around black holes (BHs), should be accompanied by bright, red KNe. In contrast, sbGRBs—if also powered by BHs—would produce fainter, red KNe, potentially biasing against their detection. However, magnetized hypermassive neutron star (HMNS) remnants that precede BH formation can produce jets with power (PNS ≈ 1051erg s−1) and Lorentz factor (Γ > 10) likely compatible with sbGRB observations, and would result in distinctly bluer KNe, offering a pathway to identifying the sbGRB central engine. Recent modeling by J. C. Rastinejad et al. found luminous red KNe consistently accompany lbGRBs, supporting their origin in BH-massive disk systems, likely following a short-lived HMNS phase. The preferential association of sbGRBs with comparably luminous KNe argues against the BH engine hypothesis for sbGRBs, while the bluer hue of these KNe provides additional support for an HMNS-driven mechanism. Within this framework, BH–NS mergers likely contribute exclusively to the lbGRB population with red KNe. Our findings suggest that GW170817 may, in fact, have been an lbGRB to on-axis observers. Finally, we discuss major challenges faced by alternative lbGRB progenitor models, such as white dwarf–NS or white dwarf–BH mergers and accretion-induced collapse forming magnetars, which fail to align with observed GRB timescales, energies, and KN properties.more » « lessFree, publicly-accessible full text available April 29, 2026
- 
            Abstract The effect of tidal forces on transport within a relic accretion disk in binary black holes is studied here with a suite of two-dimensional hydrodynamic simulations. As the binary contracts owing to the emission of gravitational waves, the accretion disk is truncated, and a two-armed spiral wave is excited, which remains stationary in the rotating reference frame of the coalescing binary. Such spiral waves lead to increased transport of mass and angular momentum. Our findings suggest that even in the case of weakly ionized accretion disks spiral density waves will drain the disk long before the orbit of the two black holes decays enough for them to merge, thus dimming prospects for a detectable electromagnetic counterpart.more » « lessFree, publicly-accessible full text available March 13, 2026
- 
            Abstract The Earth sits inside a 300 pc-wide void that was carved by a series of supernova explosions that went off tens of millions of years ago, pushing away interstellar gas and creating a bubble-like structure. The60Fe peak deposits found in the deep-sea crust have been interpreted by the imprints left by the ejecta of supernova explosions occurring about 2–3 and 5–6 Myr ago. It is likely that the60Fe peak at about 2–3 Myr originated from a supernova occurring in the Upper Centaurus Lupus association in Scorpius Centaurus (≈140 pc) or the Tucana-Horologium association (≈70 pc), whereas the ≈5–6 Myr peak is likely attributed to the solar system's entrance into the bubble. In this Letter, we show that the supernova source responsible for synthesizing the60Fe peak deposits ≈2–3 Myr ago can consistently explain the cosmic-ray spectrum and the large-scale anisotropy between 100 TeV and 100 PeV. The cosmic-ray knee could then potentially be attributed entirely to a single nearby “PeVatron” source. Matching the intensity and shape of the cosmic-ray spectrum allows us to place stringent constraints on the cosmic-ray energy content from the supernova as well as on the cosmic-ray diffusion coefficient. Making use of such constraints, we provide a robust estimate of the temporal variation of terrestrial ionizing cosmic radiation levels and discuss their implications in the development of early life on Earth by plausibly influencing the mutation rate and, as such, conceivably assisting in the evolution of complex organisms.more » « lessFree, publicly-accessible full text available January 17, 2026
- 
            Abstract Stars grazing supermassive black holes on bound orbits may produce periodic flares over many passages, known as repeating partial tidal disruption events (TDEs). Here, we present 3D hydrodynamic simulations of Sun-like stars over multiple tidal encounters. The star is significantly restructured and becomes less concentrated as a result of mass loss and tidal heating. The vulnerability to mass loss depends sensitively on the stellar density structure, and the strong correlation between the fractional mass loss ΔM/M*and the ratio of the central and average density , which was initially derived in disruption simulations of main-sequence stars, also applies for stars strongly reshaped by tides. Over multiple orbits, the star loses progressively more mass in each encounter and is doomed to a complete disruption. Throughout its lifetime, the star may produce numerous weak flares (depending on the initial impact parameter), followed by a couple of luminous flares whose brightness increases exponentially. Flux-limited surveys are heavily biased toward the brightest flares, which may appear similar to the flare produced by the same star undergoing a full disruption on its first tidal encounter. This places new challenges on constraining the intrinsic TDE rates, which need to take repeating TDEs into account. Other types of stars with different initial density structures (e.g., evolved stars with massive cores) follow distinct evolution tracks, which might explain the diversity of the long-term luminosity evolution seen in recently uncovered repeaters.more » « lessFree, publicly-accessible full text available January 16, 2026
- 
            Abstract We propose a new predictive theory for the analysis of common envelope (CE) events that incorporates the effects of relevant hydrodynamical processes into a simple analytical framework. We introduce the ejection and dynamical parametersξandβ, which define whether envelope ejection is energetically or hydrodynamically favorable, respectively, during CE inspiral. When combined, these parameters offer a detailed narrative of how inspiral begins, proceeds, and ends that is consistent with preliminary comparisons to 3D hydrodynamical models. This physically motivated framework impacts predictions for CE outcomes, especially for systems that have energy excess, and offers promise as a potential alternative for the treatment of CEs in binary population synthesis.more » « less
- 
            The energy provided in the radioactive decay of thorium (Th) and uranium (U) isotopes, embedded in planetary mantles, sustains geodynamics important for surface habitability such as the generation of a planetary magnetic dynamo. In order to better understand the thermal evolution of nearby exoplanets, stellar photospheric abundances can be used to infer the material composition of orbiting planets. Here we constrain the intrinsic dispersion of the r-process element europium (Eu) (measured in relative abundance [Eu/H]) as a proxy for Th and U in local F, G, and K type dwarf stars. Adopting stellar-chemical data from two high quality spectroscopic surveys, we have determined a small intrinsic scatter of 0.025 dex in [Eu/H] within the disk. We further investigate the stellar anti-correlation in [Eu/ α] vs [ α/H] at late metallicities to probe in what regimes planetary radiogenic heating may lead to periods of extended dynamo collapse. We find that only near-solar metallicity stars in the disk have Eu inventories supportive of a persistent dynamo in attendant planets, supporting the notion of a ``metallicity Goldilocks zone'' in the galactic disk. The observed anti-correlation further provides novel evidence regarding the nature of r-processes injection by substantiating α element production is decoupled from Eu injection. This suggests either a metallicity-dependent r-process in massive core-collapse supernovae, or that neutron-star merger events dominate r-process production in the recent universe.more » « lessFree, publicly-accessible full text available November 16, 2025
- 
            Abstract Tidal disruption events (TDEs) are an important way to probe the properties of stellar populations surrounding supermassive black holes. The observed spectra of several TDEs, such as ASASSN-14li, show high nitrogen-to-carbon (N/C) abundance ratios, leading to questions about their progenitors. Disrupting an intermediate- or high-mass star that has undergone CNO processing, increasing the nitrogen in its core, could lead to an enhanced nitrogen TDE. Galactic nuclei present a conducive environment for high-velocity stellar collisions that can lead to high mass loss, stripping the carbon- and hydrogen-rich envelopes of the stars and leaving behind the enhanced nitrogen cores. TDEs of these stripped stars may therefore exhibit even more extreme nitrogen enhancement. Using the smoothed particle hydrodynamics codeStarSmasher, we provide a parameter space study of high-velocity stellar collisions involving intermediate-mass stars, analyzing the composition of the collision products. We conclude that high-velocity stellar collisions can form products that have abundance ratios similar to those observed in the motivating TDEs. Furthermore, we show that stars which have not experienced high CNO processing can yield low-mass collision products that retain even higher N/C abundance ratios. We analytically estimate the mass fallback for a typical TDE of several collision products to demonstrate consistency between our models and TDE observations. Lastly, we discuss how the extended collision products, with high central to average density ratios, can be related to repeated partial TDEs like ASASSN-14ko and G objects in the Galactic center.more » « lessFree, publicly-accessible full text available February 6, 2026
- 
            Abstract Observations of tidal disruption events (TDEs) show signs of nitrogen enrichment reminiscent of other astrophysical sources such as active galactic nuclei and star-forming galaxies. Given that TDEs probe the gas from a single star, it is possible to test whether the observed enrichment is consistent with expectations from the CNO cycle by looking at the observed nitrogen/carbon (N/C) abundance ratios. Given that ≈20% of solar-mass stars (and an even larger fraction of more massive stars) live in close binaries, it is worthwhile to also consider what TDEs from stars influenced by binary evolution would look like. We show here that TDEs from stars stripped of their hydrogen-rich (and nitrogen-poor) envelopes through previous binary-induced mass loss can produce much higher observable N/C enhancements than even TDEs from massive stars. Additionally, we predict that the time dependence of the N/C abundance ratio in the mass fallback rate of stripped stars will follow the inverse behavior of main-sequence stars, enabling a more accurate characterization of the disrupted star.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
