skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramp, Steven R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oceanic internal gravity waves propagate along density stratification within the water column and are ubiquitous. They can propagate thousands of kilometers before breaking in shoaling bathymetry and the ensuing turbulent mixing affects coastal processes and climate feedbacks. Despite their importance, internal waves are intrinsically difficult to detect as they result in only minor amplitude deflection of the sea surface; the need for global detection and long time series of internal waves motivates a search for geophysical detection methods. The pressure coupling of a propagating internal wave with the sloping seafloor provides a potential mechanism to generate seismically observable signals. We use data from the South China Sea where exceptional oceanographic and satellite time series are available for comparison to identify internal wave signals in an onshore passive seismic data set for the first time. We analyze potential seismic signals on broadband seismometers in the context of corroborating oceanographic and satellite data available near Dongsha Atoll in May–June 2019 and find a promising correlation between transient seismic tilt signals and internal wave arrivals and collisions in oceanic and satellite data. It appears that we have successfully detected oceanic internal waves using a subaerial seismometer. This initial detection suggests that the onshore seismic detection and amplitude determination of oceanic internal waves is possible and can potentially be used to expand the historical record by capitalizing on existing island and coastal seismic stations. 
    more » « less
  2. null (Ed.)
    Abstract Internal solitary waves are ubiquitous in coastal regions and marginal seas of the world’s oceans. As the waves shoal shoreward, they lose the energy obtained from ocean tides through globally significant turbulent mixing and dissipation and consequently pump nutrient-rich water to nourish coastal ecosystem. Here we present fine-scale, direct measurements of shoaling internal solitary waves in the South China Sea, which allow for an examination of the physical processes triggering the intensive turbulent mixing in their interior. These are convective breaking in the wave core and the collapse of Kelvin–Helmholtz billows in the wave rear and lower periphery of the core, often occurring simultaneously. The former takes place when the particle velocity exceeds the wave’s propagating velocity. The latter is caused by the instability induced by the strong velocity shear overcoming the stratification. The instabilities generate turbulence levels four orders of magnitude larger than that in the open ocean. 
    more » « less
  3. Abstract Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth. 
    more » « less