skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramtin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 29, 2026
  2. Free, publicly-accessible full text available June 26, 2026
  3. Free, publicly-accessible full text available June 29, 2026
  4. Free, publicly-accessible full text available June 26, 2026
  5. Free, publicly-accessible full text available July 6, 2026
  6. Free, publicly-accessible full text available May 4, 2026
  7. Large language models (LLMs) have revolution- ized machine learning due to their ability to cap- ture complex interactions between input features. Popular post-hoc explanation methods like SHAP provide marginal feature attributions, while their extensions to interaction importances only scale to small input lengths (≈20). We propose Spectral Ex- plainer (SPEX), a model-agnostic interaction attri- bution algorithm that efficiently scales to large input lengths (≈1000). SPEX exploits underlying nat- ural sparsity among interactions—common in real- world data—and applies a sparse Fourier transform using a channel decoding algorithm to efficiently identify important interactions. We perform exper- iments across three difficult long-context datasets that require LLMs to utilize interactions between inputs to complete the task. For large inputs, SPEX outperforms marginal attribution methods by up to 20% in terms of faithfully reconstructing LLM out- puts. Further, SPEX successfully identifies key fea- tures and interactions that strongly influence model output. For one of our datasets, HotpotQA, SPEX provides interactions that align with human annota- tions. Finally, we use our model-agnostic approach to generate explanations to demonstrate abstract rea- soning in closed-source LLMs (GPT-4o mini) and compositional reasoning in vision-language models. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  8. Masked Autoencoder (MAE) is a notable method for self-supervised pretraining in visual representation learning. It operates by randomly masking image patches and reconstructing these masked patches using the unmasked ones. A key limitation of MAE lies in its disregard for the varying informativeness of different patches, as it uniformly selects patches to mask. To overcome this, some approaches propose masking based on patch informativeness. However, these methods often do not consider the specific requirements of downstream tasks, potentially leading to suboptimal representations for these tasks. In response, we introduce the Multi-level Optimized Mask Autoencoder (MLO-MAE), a novel framework that leverages end-to-end feedback from downstream tasks to learn an optimal masking strategy during pretraining. Our experimental findings highlight MLO-MAE's significant advancements in visual representation learning. Compared to existing methods, it demonstrates remarkable improvements across diverse datasets and tasks, showcasing its adaptability and efficiency. Our code is available at https://github.com/Alexiland/MLO-MAE 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  9. Bi-level optimization methods in machine learning are popularly effective in subdomains of neural architecture search, data reweighting, etc. However, most of these methods do not factor in variations in learning difficulty, which limits their performance in real-world applications. To address the above problems, we propose a framework that imitates the learning process of humans. In human learning, learners usually focus more on the topics where mistakes have been made in the past to deepen their understanding and master the knowledge. Inspired by this effective human learning technique, we propose a multilevel optimization framework, learning from mistakes (LFM), for machine learning. We formulate LFM as a three-stage optimization problem: 1) the learner learns, 2) the learner relearns based on the mistakes made before, and 3) the learner validates his learning. We develop an efficient algorithm to solve the optimization problem. We further apply our method to differentiable neural architecture search and data reweighting. Extensive experiments on CIFAR-10, CIFAR-100, ImageNet, and other related datasets powerfully demonstrate the effectiveness of our approach. The code of LFM is available at: https://github.com/importZL/LFM. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026