skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ranard, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We ask whether the knowledge of a single eigenstate of a local Hamiltonian is sufficient to uniquely determine the Hamiltonian. We present evidence that the answer is ``yes" for generic local Hamiltonians, given either the ground state or an excited eigenstate. In fact, knowing only the two-point equal-time correlation functions of local observables with respect to the eigenstate should generically be sufficient to exactly recover the Hamiltonian for finite-size systems, with numerical algorithms that run in a time that is polynomial in the system size. We also investigate the large-system limit, the sensitivity of the reconstruction to error, and the case when correlation functions are only known for observables on a fixed sub-region. Numerical demonstrations support the results for finite one-dimensional spin chains (though caution must be taken when extrapolating to infinite-size systems in higher dimensions). For the purpose of our analysis, we define the `` k -correlation spectrum" of a state, which reveals properties of local correlations in the state and may be of independent interest. 
    more » « less