skip to main content


Search for: All records

Creators/Authors contains: "Rand, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum computing technology may soon deliver revolutionary improvements in algorithmic performance, but it is useful only if computed answers are correct. While hardware-level decoherence errors have garnered significant attention, a less recognized obstacle to correctness is that of human programming errors—“bugs.” Techniques familiar to most programmers from the classical domain for avoiding, discovering, and diagnosing bugs do not easily transfer, at scale, to the quantum domain because of its unique characteristics. To address this problem, we have been working to adapt formal methods to quantum programming. With such methods, a programmer writes a mathematical specification alongside the program and semiautomatically proves the program correct with respect to it. The proof’s validity is automatically confirmed—certified—by a “proof assistant.” Formal methods have successfully yielded high-assurance classical software artifacts, and the underlying technology has produced certified proofs of major mathematical theorems. As a demonstration of the feasibility of applying formal methods to quantum programming, we present a formally certified end-to-end implementation of Shor’s prime factorization algorithm, developed as part of a framework for applying the certified approach to general applications. By leveraging our framework, one can significantly reduce the effects of human errors and obtain a high-assurance implementation of large-scale quantum applications in a principled way. 
    more » « less
  2. We introduce Qunity, a new quantum programming language designed to treat quantum computing as a natural generalization of classical computing. Qunity presents a unified syntax where familiar programming constructs can have both quantum and classical effects. For example, one can use sum types to implement the direct sum of linear operators, exception-handling syntax to implement projective measurements, and aliasing to induce entanglement. Further, Qunity takes advantage of the overlooked BQP subroutine theorem, allowing one to construct reversible subroutines from irreversible quantum algorithms through the uncomputation of "garbage" outputs. Unlike existing languages that enable quantum aspects with separate add-ons (like a classical language with quantum gates bolted on), Qunity provides a unified syntax and a novel denotational semantics that guarantees that programs are quantum mechanically valid. We present Qunity's syntax, type system, and denotational semantics, showing how it can cleanly express several quantum algorithms. We also detail how Qunity can be compiled into a low-level qubit circuit language like OpenQASM, proving the realizability of our design. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    As quantum computing progresses steadily from theory into practice, programmers will face a common problem: How can they be sure that their code does what they intend it to do? This paper presents encouraging results in the application of mechanized proof to the domain of quantum programming in the context of the SQIR development. It verifies the correctness of a range of a quantum algorithms including Grover’s algorithm and quantum phase estimation, a key component of Shor’s algorithm. In doing so, it aims to highlight both the successes and challenges of formal verification in the quantum context and motivate the theorem proving community to target quantum computing as an application domain. 
    more » « less
  5. null (Ed.)
    We present VOQC, the first fully verified optimizer for quantum circuits, written using the Coq proof assistant. Quantum circuits are expressed as programs in a simple, low-level language called SQIR, a simple quantum intermediate representation, which is deeply embedded in Coq. Optimizations and other transformations are expressed as Coq functions, which are proved correct with respect to a semantics of SQIR programs. SQIR uses a semantics of matrices of complex numbers, which is the standard for quantum computation, but treats matrices symbolically in order to reason about programs that use an arbitrary number of quantum bits. SQIR's careful design and our provided automation make it possible to write and verify a broad range of optimizations in VOQC, including full-circuit transformations from cutting-edge optimizers. 
    more » « less