Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blackfoot is challenging for English-speaking instructors and learners to acquire because it exhibits unique pitch patterns. This study presents MeTILDA (Melodic Transcription in Language Documentation and Application) as a solution to teaching pitch patterns distinct from English. Specifically, we explore ways to improve data visualization through a visualized pronunciation teaching guide called Pitch Art. The working materials can be downloaded or stored in the cloud for further use and collaboration. These features are aimed to facilitate teachers in developing a curriculum for learning pronunciation and provide students with an interactive and integrative learning environment to better understand Blackfoot language and pronunciation.more » « lessFree, publicly-accessible full text available March 21, 2025
-
Abstract Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (
n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (−4.18% ± 2.78%,p < 0.001) and free decorin (−3.42% ± 1.86%,p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases. -
Abstract Background West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. Methods We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. Results Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. Conclusions Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases). Graphical Abstractmore » « less
-
Abstract— Antennaria are dioecious perennial herbs distributed mainly in the Holarctic Region, with their major center of diversity in the Rocky Mountains of Western North America. The genus comprises 33 known sexual diploid/tetraploid species and at least five polyploid agamic complexes which mostly reproduce by forming asexual seeds. We performed a phylogenetic reconstruction of the 31 sexually-reproducing Antennaria species using a novel target enrichment method that employs custom capture probes designed to work across Asteraceae. Both concatenated and coalescent-based analyses of DNA sequence data from hundreds of nuclear loci recovered Antennaria as a monophyletic group except for the long-disputed species, Antennaria linearifolia , which was recovered outside of the genus. Antennaria was further resolved into three distinct, major lineages. Analysis of ancestral state reconstruction of 12 taxonomically important morphological characters elucidated patterns of character evolution throughout the genus. Estimations of ancestral geographic ranges and molecular dating analyses demonstrated the Rocky Mountain region, including the Vancouverian Province, as the center of origin for the genus Antennaria, around 5.8 MYA. Subsequent dispersals of Antennaria into the Arctic and Appalachian provinces, Canadian provinces, and Eurasia took place roughly 3.2 MYA, 2.4 MYA, and 1.6 MYA, respectively. Biogeographical stochastic mapping indicated that 51.4% of biogeographical events were based on within-area speciation. The remaining 48.6% of the events were divided into two types of dispersals: 1) range expansion dispersals (anagenic, 37%), and 2) founder/jump dispersals (cladogenic, 11.6%). Our results provide a framework for future evolutionary studies of Antennaria, including speciation, origin(s) of polyploidy, and agamospermy in the genus.more » « less
-
Abstract Objectives This report provides information about the public release of the 2018–2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions.
Data description Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project’s inception.
-
Arceo-Gómez, Gerardo (Ed.)Abstract Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited. To explore the effects of spatial location (edge vs. interior) on siring success, seed production, pollinator foraging patterns and pollen-mediated gene dispersal, we established a square experimental array of 49 Mimulus ringens (monkeyflower) plants. We observed foraging patterns of pollinating bumblebees and used paternity analysis to quantify male and female reproductive success and mate diversity for plants on the edge versus interior. We found no significant differences between edge and interior plants in the number of seeds sired, mothered or the number of sires per fruit. However, we found strong differences in pollinator behaviour based on plant location, including 15 % lower per flower visitation rates and substantially longer interplant moves for edge plants. This translated into 40 % greater pollen-mediated gene dispersal for edge than for interior plants. Overall, our results suggest that edge effects are not as strong as is commonly assumed, and that different plant reproduction parameters respond to spatial location independently.more » « less