skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Randerson, James T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions. 
    more » « less
  2. The intensity and frequency of wildfires in California (CA) have increased in recent years, causing significant damage to human health and property. In October 2007, a number of small fire events, collectively referred to as the Witch Creek Fire or Witch Fire started in Southern CA and intensified under strong Santa Ana winds. As a test of current mesoscale modeling capabilities, we use the Weather Research and Forecasting (WRF) model to simulate the 2007 wildfire event in terms of meteorological conditions. The main objectives of the present study are to investigate the impact of horizontal grid resolution and planetary boundary layer (PBL) scheme on the model simulation of meteorological conditions associated with a Mega fire. We evaluate the predictive capability of the WRF model to simulate key meteorological and fire-weather forecast parameters such as wind, moisture, and temperature. Results of this study suggest that more accurate predictions of temperature and wind speed relevant for better prediction of wildfire spread can be achieved by downscaling regional numerical weather prediction products to 1 km resolution. Furthermore, accurate prediction of near-surface conditions depends on the choice of the planetary boundary layer parameterization. The MYNN parameterization yields more accurate prediction as compared to the YSU parameterization. WRF simulations at 1 km resolution result in better predictions of temperature and wind speed than relative humidity during the 2007 Witch Fire. In summary, the MYNN PBL parameterization scheme with finer grid resolution simulations improves the prediction of near-surface meteorological conditions during a wildfire event. 
    more » « less
  3. Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023). 
    more » « less
  4. Over the past several decades, the annual burned area in California's Sierra Nevada mountains has increased considerably, with significant social, economic, and ecosystem impacts that provide motivation for understanding how the history of forest management influences the composition of fuels and emissions in wildfires. Here, we measured the carbon concentration and radiocarbon abundance (∆14C) of fire-emitted particulate matter from the KNP Complex Fire, which burned through several groves of giant sequoia trees in the southern Sierra Nevada mountains during California’s 2021 wildfire season. Over a 26-hour sampling period, we measured the concentration of fine airborne particulate matter (PM2.5) along with carbon monoxide (CO) and methane (CH4) dry air mole fractions using a ground-based mobile laboratory. Filter samples of PM2.5 were also collected and later analyzed for carbon concentration and ∆14C. Covariation of PM2.5, CO, and CH4 time series data confirmed that our PM2.5 samples were representative of wildfire emissions. Using a Keeling plot approach, we estimated that the mean ∆14C of PM2.5 was 111.5 ± 2.3‰ (n=12), which is considerably enriched relative to that of atmospheric carbon dioxide in the northern hemisphere in 2021 (-3.4 ± 1.4‰). By combining these ∆14C data with a steady-state one-box ecosystem model, we estimated that the mean age of fuels combusted in the KNP Complex Fire was 40 ± 6 years. This multi-decadal fuel age provides evidence for emissions from woody biomass, coarse woody debris, and larger-diameter fine fuels. The combustion of these larger-size fuel classes is consistent with independent field observations that indicate high fire intensity contributed to widespread giant sequoia mortality. With the expanded use of prescribed fires planned over the next decade in California to mitigate impacts of wildfires, our measurement approach has the potential to provide regionally-integrated estimates of the effectiveness of fuel treatment programs. 
    more » « less
  5. Abstract Climate-driven changes in precipitation amounts and their seasonal variability are expected in many continental-scale regions during the remainder of the 21st century. However, much less is known about future changes in the predictability of seasonal precipitation, an important earth system property relevant for climate adaptation. Here, on the basis of CMIP6 models that capture the present-day teleconnections between seasonal precipitation and previous-season sea surface temperature (SST), we show that climate change is expected to alter the SST-precipitation relationships and thus our ability to predict seasonal precipitation by 2100. Specifically, in the tropics, seasonal precipitation predictability from SSTs is projected to increase throughout the year, except the northern Amazonia during boreal winter. Concurrently, in the extra-tropics predictability is likely to increase in central Asia during boreal spring and winter. The altered predictability, together with enhanced interannual variability of seasonal precipitation, poses new opportunities and challenges for regional water management. 
    more » « less
  6. Abstract Changing wildfire regimes in the western US and other fire-prone regions pose considerable risks to human health and ecosystem function. However, our understanding of wildfire behavior is still limited by a lack of data products that systematically quantify fire spread, behavior and impacts. Here we develop a novel object-based system for tracking the progression of individual fires using 375 m Visible Infrared Imaging Radiometer Suite active fire detections. At each half-daily time step, fire pixels are clustered according to their spatial proximity, and are either appended to an existing active fire object or are assigned to a new object. This automatic system allows us to update the attributes of each fire event, delineate the fire perimeter, and identify the active fire front shortly after satellite data acquisition. Using this system, we mapped the history of California fires during 2012–2020. Our approach and data stream may be useful for calibration and evaluation of fire spread models, estimation of near-real-time wildfire emissions, and as means for prescribing initial conditions in fire forecast models. 
    more » « less
  7. Abstract. Fire is the dominant disturbance agent in Alaskan and Canadianboreal ecosystems and releases large amounts of carbon into the atmosphere.Burned area and carbon emissions have been increasing with climate change,which have the potential to alter the carbon balance and shift the regionfrom a historic sink to a source. It is therefore critically important totrack the spatiotemporal changes in burned area and fire carbon emissionsover time. Here we developed a new burned-area detection algorithm between2001–2019 across Alaska and Canada at 500 m (meters) resolution thatutilizes finer-scale 30 m Landsat imagery to account for land coverunsuitable for burning. This method strictly balances omission andcommission errors at 500 m to derive accurate landscape- and regional-scaleburned-area estimates. Using this new burned-area product, we developedstatistical models to predict burn depth and carbon combustion for the sameperiod within the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) coreand extended domain. Statistical models were constrained using a database offield observations across the domain and were related to a variety ofresponse variables including remotely sensed indicators of fire severity,fire weather indices, local climate, soils, and topographic indicators. Theburn depth and aboveground combustion models performed best, with poorerperformance for belowground combustion. We estimate 2.37×106 ha (2.37 Mha) burned annually between 2001–2019 over the ABoVE domain (2.87 Mhaacross all of Alaska and Canada), emitting 79.3 ± 27.96 Tg (±1standard deviation) of carbon (C) per year, with a mean combustionrate of 3.13 ± 1.17 kg C m−2. Mean combustion and burn depthdisplayed a general gradient of higher severity in the northwestern portionof the domain to lower severity in the south and east. We also found larger-fire years and later-season burning were generally associated with greatermean combustion. Our estimates are generally consistent with previousefforts to quantify burned area, fire carbon emissions, and their drivers inregions within boreal North America; however, we generally estimate higherburned area and carbon emissions due to our use of Landsat imagery, greateravailability of field observations, and improvements in modeling. The burnedarea and combustion datasets described here (the ABoVE Fire EmissionsDatabase, or ABoVE-FED) can be used for local- to continental-scaleapplications of boreal fire science. 
    more » « less