skip to main content


Search for: All records

Creators/Authors contains: "Ranganath, Charan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigated how the human brain integrates experiences of specific events to build general knowledge about typical event structure. We examined an episodic memory area important for temporal relations, anterior-lateral entorhinal cortex, and a semantic memory area important for action concepts, middle temporal gyrus, to understand how and when these areas contribute to these processes. Participants underwent functional magnetic resonance imaging while learning and recalling temporal relations among novel events over two sessions 1 week apart. Across distinct contexts, individual temporal relations among events could either be consistent or inconsistent with each other. Within each context, during the recall phase, we measured associative coding as the difference of multivoxel correlations among related vs unrelated pairs of events. Neural regions that form integrative representations should exhibit stronger associative coding in the consistent than the inconsistent contexts. We found evidence of integrative representations that emerged quickly in anterior-lateral entorhinal cortex (at session 1), and only subsequently in middle temporal gyrus, which showed a significant change across sessions. A complementary pattern of findings was seen with signatures during learning. This suggests that integrative representations are established early in anterior-lateral entorhinal cortex and may be a pathway to the later emergence of semantic knowledge in middle temporal gyrus.

     
    more » « less
  2. null (Ed.)
  3. The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC.

     
    more » « less