skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rapaport, Ronen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrically controlled photonic circuits hold promise for information technologies with greatly improved energy efficiency and quantum information processing capabilities. However, weak nonlinearity and electrical response of typical photonic materials have been two critical challenges. Therefore, hybrid electronic-photonic systems, such as semiconductor exciton polaritons, have been intensely investigated for their potential to allow higher nonlinearity and electrical control, with limited success so far. Here we demonstrate an electrically gated waveguide architecture for field induced dipolar polaritons that allows enhanced and electrically controllable polariton nonlinearities, enabling an electrically tuned reflecting switch (mirror) and transistor of the dipolar polaritons. The polariton transistor displays blockade and antiblockade by compressing a dilute dipolar-polariton pulse exhibiting very strong dipolar interactions. The large nonlinearities are explained using a simple density-dependent dipolar polarization field that very effectively screens the external electric field. We project that a quantum blockade at the single polariton level is feasible in such a device. Published by the American Physical Society2024 
    more » « less