skip to main content


Search for: All records

Creators/Authors contains: "Rashid, Md Mamunur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infrastructure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydrometeorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more comprehensive and accurate assessments of the impacts of compound hazards. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract We address the challenge, due to sparse observational records, of investigating long-term changes in the storm surge climate globally. We use two centennial and three satellite-era daily storm surge time series from the Global Storm Surge Reconstructions (GSSR) database and assess trends in the magnitude and frequency of extreme storm surge events at 320 tide gauges across the globe from 1930, 1950, and 1980 to present. Before calculating trends, we perform change point analysis to identify and remove data where inhomogeneities in atmospheric reanalysis products could lead to spurious trends in the storm surge data. Even after removing unreliable data, the database still extends existing storm surge records by several decades for most of the tide gauges. Storm surges derived from the centennial 20CR and ERA-20C atmospheric reanalyses show consistently significant positive trends along the southern North Sea and the Kattegat Bay regions during the periods from 1930 and 1950 onwards and negative trends since 1980 period. When comparing all five storm surge reconstructions and observations for the overlapping 1980–2010 period we find overall good agreement, but distinct differences along some coastlines, such as the Bay of Biscay and Australia. We also assess changes in the frequency of extreme surges and find that the number of annual exceedances above the 95th percentile has increased since 1930 and 1950 in several regions such as Western Europe, Kattegat Bay, and the US East Coast. 
    more » « less
  4. Abstract. Flooding is of particular concern in low-lying coastal zones that are prone to flooding impacts from multiple drivers, such as oceanographic (storm surge and wave), fluvial (excessive river discharge), and/or pluvial (surface runoff). In this study, we analyse, for the first time, the compound flooding potential along the contiguous United States (CONUS) coastline from all flooding drivers, using observations and reanalysis data sets. We assess the overall dependence from observations by using Kendall's rank correlation coefficient (τ) and tail (extremal) dependence (χ). Geographically, we find the highest dependence between different drivers at locations in the Gulf of Mexico, southeastern, and southwestern coasts. Regarding different driver combinations, the highest dependence exists between surge–waves, followed by surge–precipitation, surge–discharge, waves–precipitation, and waves–discharge. We also perform a seasonal dependence analysis (tropical vs. extra-tropical season), where we find higher dependence between drivers during the tropical season along the Gulf and parts of the East Coast and stronger dependence during the extra-tropical season on the West Coast. Finally, we compare the dependence structure of different combinations of flooding drivers, using observations and reanalysis data, and use the Kullback–Leibler (KL) divergence to assess significance in the differences of the tail dependence structure. We find, for example, that models underestimate the tail dependence between surge–discharge on the East and West coasts and overestimate tail dependence between surge–precipitation on the East Coast, while they underestimate it on the West Coast. The comprehensive analysis presented here provides new insights on where the compound flooding potential is relatively higher, which variable combinations are most likely to lead to compounding effects, duringwhich time of the year (tropical versus extra-tropical season) compoundflooding is more likely to occur, and how well reanalysis data capture thedependence structure between the different flooding drivers. 
    more » « less