skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rastinejad, J_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The existence of a secondary (in addition to compact object mergers) source of heavy element (r-process) nucleosynthesis, the core-collapse of rapidly rotating and highly magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature ofr-process enrichment, a late-time (≳40 days post-burst) distinct red color, in observations of gamma-ray burst supernovae (GRB-SNe), which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe atz≲ 0.4, extending out to >500 days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D, and 130427A are consistent with both no enrichment and producing 0.01–0.15Mofr-process material if there is a low amount of mixing between the innerr-process ejecta and outer supernova (SN) layers. GRB 190829A is not consistent with any models withr-process enrichment ≥0.01M. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due tor-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuringr-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution ofr-process produced by GRB-SNe. 
    more » « less