skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rastogi, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide adoption of artificial neural networks in var- ious domains has led to an increasing interest in defending adversarial attacks against them. Preprocessing defense methods such as pixel discretization are particularly attractive in practice due to their simplicity, low computational overhead, and appli- cability to various systems. It is observed that such methods work well on simple datasets like MNIST, but break on more complicated ones like ImageNet under recently proposed strong white-box attacks. To understand the conditions for success and potentials for improvement, we study the pixel discretization defense method, including more sophisticated variants that take into account the properties of the dataset being discretized. Our results again show poor resistance against the strong attacks. We analyze our results in a theoretical framework and offer strong evidence that pixel discretization is unlikely to work on all but the simplest of the datasets. Furthermore, our arguments present insights why some other preprocessing defenses may be insecure. 
    more » « less