skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raston, Paul L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We measured the rotationally resolved infrared spectra of helium solvated methyl fluoride at 3 μm and 10 μm, wherein lies C−H and C−F stretching bands, respectively. The linewidths (FWHM) were found to increase with increasing vibrational energy and range from 0.002 cm−1in thev3band (C−F stretch) at ~1047 cm−1, to 0.65 cm−1in thev4band (asymmetric C−H stretch) at ~2997 cm−1. In between these two bands we observed the lower and upper components of the Fermi triad bands (ν1/2ν2/2ν5) at ~2859 and ~2961 cm−1. We carried out Stark spectroscopy on the lower band on account of its narrower linewidths (0.04 vs. 0.14 cm−1, respectively). The objective of performing Stark spectroscopy was to see if there is any evidence for a rotational linewidth dependence on the external field strength, due to a reduced difference in between methyl fluorides rotational energy gap and the roton‐gap of superfluid helium. We did not find any evidence for such an effect, which we largely attribute to the rotational energy gap not increasing significantly enough by the external field. We point to another molecule (formaldehyde) whose energy levels are predicted to show a more promising response to application of an external field. 
    more » « less
  2. null (Ed.)