Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Iron emissions from human activities, such as oil combustion and smelting, affect the Earth's climate and marine ecosystems. These emissions are difficult to quantify accurately due to a lack of observations, particularly in remote ocean regions. In this study, we used long‐term, near‐source observations in areas with a dominance of anthropogenic iron emissions in various parts of the world to better estimate the total amount of anthropogenic iron emissions. We also used a statistical source apportionment method to identify the anthropogenic components and their sub‐sources from bulk aerosol observations in the United States. We find that the estimates of anthropogenic iron emissions are within a factor of 3 in most regions compared to previous inventory estimates. Under‐ or overestimation varied by region and depended on the number of sites, interannual variability, and the statistical filter choice. Smelting‐related iron emissions are overestimated by a factor of 1.5 in East Asia compared to previous estimates. More long‐term iron observations and the consideration of the influence of dust and wildfires could help reduce the uncertainty in anthropogenic iron emissions estimates.more » « less
-
Abstract The role of manganese (Mn) in ecosystem carbon (C) biogeochemical cycling is gaining increasing attention. While soil Mn is mainly derived from bedrock, atmospheric deposition could be a major source of Mn to surface soils, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g., industrialization and land‐use change due to agriculture), transport, and deposition, remains uncertain. Here, we use compiled emission data sets for each identified source to model and quantify the atmospheric Mn cycle by combining an atmospheric model and in situ atmospheric concentration measurements. We estimated global emissions of atmospheric Mn in aerosols (<10 μm in aerodynamic diameter) to be 1,400 Gg Mn year−1. Approximately 31% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened Mn “pseudo” turnover times in 1‐m‐thick surface soils (ranging from 1,000 to over 10,000,000 years) by 1–2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn‐to‐N ratio of the atmospheric deposition in non‐desert dominated regions (between 5 × 10−5and 0.02) across industrialized areas, but that was still lower than soil Mn‐to‐N ratio by 1–3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, consisting with atmospheric Mn deposition enhancing carbon respiration as seen in in situ biogeochemical studies.more » « less
-
Abstract The iron cycle is a key component of the Earth system. Yet how variable the atmospheric flux of soluble (bioaccessible) iron into oceans is, and how this variability is modulated by human activity and a changing climate, is not well known. For the first time, we characterize Satellite Era (1980 to 2015) daily‐to‐interannual modeled soluble iron emission and deposition variability from both pyrogenic (fires and anthropogenic combustion) and dust sources. Statistically significant emission trends exist: dust iron decreases, fire iron slightly increases, and anthropogenic iron increases. A strong temporal variability in deposition to ocean basins is found, and, for most regions, dust iron dominates the absolute deposition magnitude, fire iron is an important contributor to temporal variability, and anthropogenic iron imposes a significant increasing trend. Quantifying soluble iron daily‐to‐interannual deposition variability from all major iron sources, not only dust, will advance quantification of changes in marine biogeochemistry in response to the continuing human perturbation to the Earth System.more » « less
An official website of the United States government
