skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ratmann, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Viral deep-sequencing data play a crucial role toward understanding disease transmission network flows, providing higher resolution compared to standard Sanger sequencing. To more fully utilize these rich data and account for the uncertainties in outcomes from phylogenetic analyses, we propose a spatial Poisson process model to uncover human immunodeficiency virus (HIV) transmission flow patterns at the population level. We represent pairings of individuals with viral sequence data as typed points, with coordinates representing covariates such as gender and age and point types representing the unobserved transmission statuses (linkage and direction). Points are associated with observed scores on the strength of evidence for each transmission status that are obtained through standard deep-sequence phylogenetic analysis. Our method is able to jointly infer the latent transmission statuses for all pairings and the transmission flow surface on the source-recipient covariate space. In contrast to existing methods, our framework does not require preclassification of the transmission statuses of data points, and instead learns them probabilistically through a fully Bayesian inference scheme. By directly modeling continuous spatial processes with smooth densities, our method enjoys significant computational advantages compared to previous methods that rely on discretization of the covariate space. We demonstrate that our framework can capture age structures in HIV transmission at high resolution, bringing valuable insights in a case study on viral deep-sequencing data from Southern Uganda.

     
    more » « less
  2. Abstract

    Cultural traditions have been observed in a wide variety of animal species. It remains unclear, however, what is required for social learning to give rise to stable traditions: what level of precision and what learning strategies are required. We address these questions by fitting models of cultural evolution to learned bird song. We recorded 615 swamp sparrow (Melospiza georgiana) song repertoires, and compared syllable frequency distributions to the output of individual-based simulations. We find that syllables are learned with an estimated error rate of 1.85% and with a conformist bias in learning. This bias is consistent with a simple mechanism of overproduction and selective attrition. Finally, we estimate that syllable types could frequently persist for more than 500 years. Our results demonstrate conformist bias in natural animal behaviour and show that this, along with moderately precise learning, may support traditions whose stability rivals those of humans.

     
    more » « less