skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raum, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Generalizing the well-known construction of Eisenstein series on the modular curves, Siegel–Veech transforms provide a natural construction of square-integrable functions on strata of differentials on Riemann surfaces. This space carries actions of the foliated Laplacian derived from the \mathrm{SL}_{2}(\mathbb{R})-action as well as various differential operators related to relative period translations.In the paper we give spectral decompositions for the stratum of tori with two marked points. This is a homogeneous space for a special affine group, which is not reductive and thus does not fall into well-studied cases of the Langlands program, but still allows to employ techniques from representation theory and global analysis. Even for this simple stratum, exhibiting all Siegel–Veech transforms requires novel configurations of saddle connections. We also show that the continuous spectrum of the foliated Laplacian is much larger than the space of Siegel–Veech transforms, as opposed to the case of the modular curve. This defect can be remedied by using instead a compound Laplacian involving relative period translations. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026