skip to main content

Search for: All records

Creators/Authors contains: "Raval, Jay K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Through-tool minimum quantity lubrication (MQL) drilling has been used in industry for decades, but little information is available on the coolant channel design and the effect on fluid distribution due to the inability of in-situ measurement. This study utilizes an Euler–Lagrange computational fluid dynamics (CFD) model to uncover the two-phase flow behavior in MQL drilling. Air is the primary phase modeled as a compressible and turbulent flow. The lubricant droplets are simulated as discrete particles with a proper size distribution. Two-way coupling and droplet-wall interactions are both considered. The results show that the primary phase can reach velocities in the transonic region and is dependent on the helical path of the channel. In addition, most of the lubricant droplets (>95%) impact the channel wall to form fluid film instead of following the air stream. In the cutting zone, droplets can hardly reach the cutting edges in both circular and triangular channel shapes. Finally, a custom-made drilling testbed, along with a transparent work-material simulant, is used to observe and qualitatively validate these results. 
    more » « less
  2. null (Ed.)

    Minimum quantity lubrication (MQL) drilling has been known for decades, but limited knowledge is available on two-channel through-tool MQL drilling due to the lack of accessibility to production systems. A common problem in MQL drilling is the absence of a rational approach to select the oil flow rate. The limited entry and exit area, and fixed energy available to the flow make the behavior complicated. This study leverages the capabilities in Ford’s manufacturing lab to abridge the research gap. Four different oil flow rates (0 ml/h, 15 ml/h, 30 ml/h and 60 ml/h) and two different drills (twist drill and straight drill) were used to find out the influence of oil flow rate on the cutting performance. Tool life, tool wear, cutting force and torque were monitored as the cutting performance indicators. It was concluded that, the common belief of higher oil flow rate providing better tool life, does not hold true for through-tool MQL drilling. The tool life for 30 ml/hr. oil flow rate appeared to be the highest compared to all the other cases for both the drills. Increasing the oil flow rate above 30 ml/hr. decreased the tool life. However, it is to be noted that the optimal oil flow rate values may be specific to the case.

    more » « less
  3. Mist distribution is a critical factor in through-tool minimum quantity lubrication (MQL) drilling since a small amount of lubricant is used. However, it has rarely been discussed because of the difficulty in measuring the mist flow experimentally. In this paper, an optical approach is developed to approximate the mist distribution by using high-speed images from multiple angles. Drill bits with two through-tool channel shapes (circle and triangle) and three helix angles (0°, 30°, and 45°) are 3D-printed for mist distribution analysis. Further, computational fluid dynamics (CFD) is conducted to investigate the underlying physics behind mist flow variations. The results show that, in the circular channel, the mist is concentrated near the periphery; the low concentration region shifts away from the chisel point as the helix angle increases. For the triangular channel, the mist is concentrated near three vertices but is less affected by the helix angle. Furthermore, based on the CFD solution, high mist concentration tends to be in low-velocity regions and vice versa. This study confirms a noticeable difference of mist flow distribution in different through-tool channel designs. 
    more » « less