skip to main content

Search for: All records

Creators/Authors contains: "Ravi R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We introduce and study a class of optimization problems we call replenishment problems with fixed turnover times: a very natural model that has received little attention in the literature. Clients with capacity for storing a certain commodity are located at various places; at each client the commodity depletes within a certain time, the turnover time, which is constant but can vary between locations. Clients should never run empty. The natural feature that makes this problem interesting is that we may schedule a replenishment (well) before a client becomes empty, but then the next replenishment will be due earlier also. This added workload needs to be balanced against the cost of routing vehicles to do the replenishments. In this paper, we focus on the aspect of minimizing routing costs. However, the framework of recurring tasks, in which the next job of a task must be done within a fixed amount of time after the previous one is much more general and gives an adequate model for many practical situations. Note that our problem has an infinite time horizon. However, it can be fully characterized by a compact input, containing only the location of each client and a turnover time. Thismore »makes determining its computational complexity highly challenging and indeed it remains essentially unresolved. We study the problem for two objectives:minavg  minimizes the average tour cost andminmax  minimizes the maximum tour cost over all days. Forminmax  we derive a logarithmic factor approximation for the problem on general metrics and a 6-approximation for the problem on trees, for which we have a proof of NP-hardness. Forminavg  we present a logarithmic factor approximation on general metrics, a 2-approximation for trees, and a pseudopolynomial time algorithm for the line. Many intriguing problems remain open.

    « less
  2. Free, publicly-accessible full text available September 1, 2023
  3. Abstract

    Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC),N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. Nonemore »of the observed brain changes were correlated with disease duration. Together, these findings are consistent with compromised functioning of networks involved in executive function and sensory integration in UC.

    « less
  4. Abstract

    Irritable bowel syndrome (IBS) is a common disorder of brain-gut interactions characterized by chronic abdominal pain, altered bowel movements, often accompanied by somatic and psychiatric comorbidities. We aimed to test the hypothesis that a baseline phenotype composed of multi-modal neuroimaging and clinical features predicts clinical improvement on the IBS Symptom Severity Scale (IBS-SSS) at 3 and 12 months without any targeted intervention. Female participants (N = 60) were identified as “improvers” (50-point decrease on IBS-SSS from baseline) or “non-improvers.” Data integration analysis using latent components (DIABLO) was applied to a training and test dataset to determine whether a limited number of sets of multiple correlated baseline’omics data types, including brain morphometry, anatomical connectivity, resting-state functional connectivity, and clinical features could accurately predict improver status. The derived predictive models predicted improvement status at 3-months and 12-months with 91% and 83% accuracy, respectively. Across both time points, non-improvers were classified as having greater correlated morphometry, anatomical connectivity and resting-state functional connectivity characteristics within salience and sensorimotor networks associated with greater pain unpleasantness, but lower default mode network integrity and connectivity. This suggests that non-improvers have a greater engagement of attentional systems to perseverate on painful visceral stimuli, predicting IBS exacerbation. The ability ofmore »baseline multimodal brain-clinical signatures to predict symptom trajectories may have implications in guiding integrative treatment in the age of precision medicine, such as treatments targeted at changing attentional systems such as mindfulness or cognitive behavioral therapy.

    « less
  5. A fundamental task in active learning involves performing a sequence of tests to identify an unknown hypothesis that is drawn from a known distribution. This problem, known as optimal decision tree induction, has been widely studied for decades and the asymptotically best-possible approximation algorithm has been devised for it. We study a generalization where certain test outcomes are noisy, even in the more general case when the noise is persistent, i.e., repeating the test on the scenario gives the same noisy output, disallowing simple repetition as a way to gain confidence. We design new approximation algorithms for both the non-adaptive setting, where the test sequence must be fixed a-priori, and the adaptive setting where the test sequence depends on the outcomes of prior tests. Previous work in the area assumed at most a constant number of noisy outcomes per test and per scenario and provided approximation ratios that were problem dependent (such as the minimum probability of a hypothesis). Our new approximation algorithms provide guarantees that are nearly best-possible and work for the general case of a large number of noisy outcomes per test or per hypothesis where the performance degrades smoothly with this number. Our results adapt and generalizemore »methods used for submodular ranking and stochastic set cover. We evaluate the performance of our algorithms on two natural applications with noise: toxic chemical identification and active learning of linear classifiers. Despite our logarithmic theoretical approximation guarantees, our methods give solutions with cost very close to the information theoretic minimum, demonstrating the effectiveness of our methods.« less