skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravichandran, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the shape of a distribution of data is of interest to people in a great variety of fields, as it may affect the types of algorithms used for that data. We study one such problem in the framework of {\em distribution property testing}, characterizing the number of samples required to to distinguish whether a distribution has a certain property or is far from having that property. In particular, given samples from a distribution, we seek to characterize the tail of the distribution, that is, understand how many elements appear infrequently. We develop an algorithm based on a careful bucketing scheme that distinguishes light-tailed distributions from non-light-tailed ones with respect to a definition based on the hazard rate, under natural smoothness and ordering assumptions. We bound the number of samples required for this test to succeed with high probability in terms of the parameters of the problem, showing that it is polynomial in these parameters. Further, we prove a hardness result that implies that this problem cannot be solved without any assumptions. 
    more » « less