skip to main content

Search for: All records

Creators/Authors contains: "Ray, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 5, 2023
  2. A continuum of water populations can exist in nanoscale layered materials, which impacts transport phenomena relevant for separation, adsorption, and charge storage processes. Quantification and direct interrogation of water structure and organization are important in order to design materials with molecular-level control for emerging energy and water applications. Through combining molecular simulations with ambient-pressure X-ray photoelectron spectroscopy, X-ray diffraction, and diffuse reflectance infrared Fourier transform spectroscopy, we directly probe hydration mechanisms at confined and nonconfined regions in nanolayered transition-metal carbide materials. Hydrophobic (K + ) cations decrease water mobility within the confined interlayer and accelerate water removal at nonconfined surfaces.more »Hydrophilic cations (Li + ) increase water mobility within the confined interlayer and decrease water-removal rates at nonconfined surfaces. Solutes, rather than the surface terminating groups, are shown to be more impactful on the kinetics of water adsorption and desorption. Calculations from grand canonical molecular dynamics demonstrate that hydrophilic cations (Li + ) actively aid in water adsorption at MXene interfaces. In contrast, hydrophobic cations (K + ) weakly interact with water, leading to higher degrees of water ordering (orientation) and faster removal at elevated temperatures.« less
    Free, publicly-accessible full text available November 29, 2022
  3. Free, publicly-accessible full text available July 5, 2022
  4. Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available April 1, 2023