Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Metamaterials are emerging as an unconventional platform to perform computing abstractions in physical systems by processing environmental stimuli into information. While computation functions have been demonstrated in mechanical systems, they rely on compliant mechanisms to achieve predefined states, which impose inherent design restrictions that limit their miniaturization, deployment, reconfigurability, and functionality. Here, a metamaterial system is described based on responsive magnetoactive Janus particle (MAJP) swarms with multiple programmable functions. MAJPs are designed with tunable structure and properties in mind, that is, encoded swarming behavior and fully reversible switching mechanisms, to enable programmable dynamic display, non‐volatile and semi‐volatile memory, Boolean logic, and information encryption functions in soft, wearable devices. MAJPs and their unique swarming behavior open new functions for the design of multifunctional and reconfigurable display devices, and constitute a promising building block to develop the next generation of soft physical computing devices, with growing applications in security, defense, anti‐counterfeiting, camouflage, soft robotics, and human‐robot interaction.more » « less
-
The rapid synthesis of an optically-transparent, flexible elastomer was performed utilizing the naturally-derived source, isosorbide. A novel monomer based on isosorbide (isosorbide dialloc, IDA) was prepared by installing carbonate functionalities along with external olefins for use in thiol–ene click chemistry. Cross-linked networks were created using the commercially-available cross-linker, trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) and resulted in IDA- co -TMPTMP, an optically-transparent elastomer. Systematically, IDA- co -TMPTMP networks were synthesized using a photoinitiator, a UV cure time of one minute and varied post cure times (0–24 h, 125 mm Hg) at 100 °C to observe effects on mechanical, thermal and surface alterations. The mechanical properties also had limited changes with post cure time, including a modulus at 25 °C of 1.9–2.8 MPa and an elongation of 220–344%. The thermal decomposition temperatures of the networks were consistent, ca. 320 °C, while the glass transition temperature remained below room temperature for all samples. A cell viability assay and fluorescence imaging with adherent cells are also reported in this study to show the potential of the material as a biomedical substrate. A degradation study for 60 days resulted in 8.3 ± 3.5% and 97.7 ± 0.3% mass remaining under accelerated (1 M NaOH, 60 °C) and biological conditions (pH 7.4 PBS at 37 °C), respectively. This quickly-synthesized material has the potential to hydrolytically degrade into biologically-benign and environmentally-friendly by-products and may be utilized in renewable plastics and/or bioelastomer applications.more » « less
-
The extracellular matrix (ECM) influences biological processes associated with tissue development and disease progression. However, robust cell‐free techniques to control fiber alignment of naturally derived ECM proteins, such as fibronectin (Fn), remain elusive. It is demonstrated that controlled hydrodynamics of Fn solutions at the air/fluid interface of porous tessellated polymer scaffolds (TPSs) generates suspended 3D fibrillar networks with alignment across multiple length scales (<1, 1–20 μm, extended to >1 mm). The direction of the fluid flow and the architecture of the polymeric supports influence protein solution flow profiles and, subsequently, the alignment of insoluble Fn fibrils. Aligned networks of fibrillar Fn characteristically alter fibroblast phenotype, indicated by increased directional orientation, enhanced nuclear and cytoskeletal polarity, and highly anisotropic and persistent cell motility when compared with nonaligned 3D networks and 2D substrates. Engineered extracellular matrices (EECMs) establish a critically needed tool for both fundamental and applied cell biology studies, with potential applications in diverse areas such as cancer biology and regenerative medicine.more » « less
An official website of the United States government
