skip to main content

Search for: All records

Creators/Authors contains: "Raymond, Peter A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Methane (CH4) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH4emissions from freshwater ecosystems1,2, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH4emissions remain highly uncertain3,4. Here we report a spatially explicit global estimate of CH4emissions from running waters, accounting for 27.9 (16.7–39.7) Tg CH4 per year and roughly equal in magnitude to those of other freshwater systems5,6. Riverine CH4emissions are not strongly temperature dependent, with low average activation energy (EM = 0.14 eV) compared with that of lakes and wetlands (EM = 0.96 eV)1. By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land–water connections in regulating CH4supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.

    more » « less
    Free, publicly-accessible full text available September 21, 2024
  2. Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced14C in atmospheric, land and ocean carbon reservoirs. First,14C-free carbon derived from fossil fuel burning has diluted14C, at rates that have accelerated with time. Second, ‘bomb’14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air–sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the14C/12C ratio of atmospheric CO2is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in14C measurement capacity worldwide. Leveraging future14C measurements to understand processes and test models requires coordinated international effort—a ‘decade of radiocarbon’ with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks.

    This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

    more » « less
    Free, publicly-accessible full text available November 27, 2024
  3. Abstract Dissolved organic matter (DOM) impacts the structure and function of aquatic ecosystems. DOM absorbs light in the UV and visible (UV–Vis) wavelengths, thus impacting light attenuation. Because absorption by DOM depends on its composition, UV–Vis absorbance is used to constrain DOM composition, source, and amount. Ferric iron, Fe(III), also absorbs in the UV–Vis; when Fe(III) is present, DOM-attributed absorbance is overestimated. Here, we explore how differing behavior of DOM and Fe(III) at the catchment scale impacts UV–Vis absorbance and evaluate how system-specific variability impacts the effectiveness of existing Fe(III) correction factors in a temperate watershed. We sampled five sites in the Connecticut River mainstem bi-weekly for ~ 1.5 years, and seven sites in the Connecticut River watershed once during the summer 2019. We utilized size fractionation to isolate the impact of DOM and Fe(III) on absorbance and show that variable contributions of Fe(III) to absorbance at 254 nm (a 254 ) and 412 nm (a 412 ) by size fraction complicates correction for Fe(III). We demonstrate that the overestimation of DOM-attributed absorbance by Fe(III) is correlated to the Fe(III):dissolved organic carbon concentration ratio; thus, overestimation can be high even when Fe(III) is low. a 254 overestimation is highly variable even within a single system, but can be as high as 53%. Finally, we illustrate that UV-Vis overestimation might impart bias to seasonal, discharge, and land-use trends in DOM quality. Together, these findings argue that Fe(III) should be measured in tandem with UV–Vis absorbance for estimates of CDOM composition or amount. 
    more » « less
  4. Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system. 
    more » « less
  5. Free, publicly-accessible full text available July 1, 2024
  6. Abstract

    Riverine dissolved iron (Fe) affects water color, nutrients, and marine carbon cycling. Fe size and coupling with dissolved organic matter (DOM), in part, modulates the biogeochemical roles of riverine Fe. We used size fractionation to operationally define dissolved Fe (< 0.22 μm) into soluble (< 0.02 μm) and colloidal (0.02–0.22 μm) fractions in order to characterize the downstream drivers, concentrations, and fluxes of Fe across season and hydrologic regime at the freshwater Connecticut River mainstem, which we sampled bi‐weekly for 2 yrs. Drivers of colloidal and soluble Fe concentrations were markedly different. The response of colloidal Fe concentration to changes in discharge was modulated by water temperature; colloidal Fe decreased with increasing discharge at temperatures < 10.5°C, but increased with increasing discharge at temperatures > 10.5°C. Conversely, soluble Fe concentrations were only positively correlated to discharge at high temperatures (> 20°C). Soluble Fe was strongly positively correlated to a humic‐like DOM fluorescence component, suggesting coupling with DOM subsets, potentially through complexation. While average colloidal Fe fluxes varied twofold seasonally, soluble Fe fluxes varied ninefold; therefore, soluble Fe variability was more important to the overall dissolved Fe variability than colloidal Fe, despite lower concentrations. Seasonal Fe fluxes were decoupled from discharge: dissolved and soluble Fe fluxes were greatest in the fall, whereas discharge was greatest in the spring. Fluxes of soluble Fe, which may be more bioavailable and more likely to be exported to the ocean, were lowest in the summer when downstream biological demand is high, having implications for primary productivity and iron uptake.

    more » « less
  7. The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leads to higher percentages of GPP being shunted into rivers for evasion in wetter regions. This highlights the importance of hydrology, in particular water throughput, in routing terrestrial carbon to the atmosphere via the global drainage networks. Our results suggest the need to account for the differential hydrological responses of terrestrial–atmospheric vs. fluvial–atmospheric carbon exchanges in plumbing the terrestrial carbon budget. 
    more » « less