skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rayner, Jack"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sex-biased longevity is observed across a wide range of animal taxa, including bats, for reasons not well understood. Patterns of cytosine methylation vary predictably with age in many organisms, offering a valuable means to investigate differences in patterns of aging at the molecular level. We tested sex differences in cytosine methylation across 14 bat species and compared patterns of age-associated variation. Sex differences were overrepresented on the X chromosome, showing a strong pattern of female hypermethylation within promoter regions. Sex and age-associated differences in methylation were non-randomly distributed with respect to proximity to putative sex hormone receptor binding sites, with sites hypermethylated in males and females tending to be underrepresented near androgen and estrogen receptor binding sites, respectively. Across species, we observed the relative steepness of male versus female slopes of age-associated variation was associated with the strength of precopulatory sexual selection, with especially strong trends towards male-biased age-associated slopes in two harem-polygynous species that exhibit female-biased longevity. Our results offer insights into how patterns of methylation differ across sexes and ages, and raise intriguing questions for future research, such as whether sex differences in molecular aging reflect sex-biased longevity, for which records in bats are sparse. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  2. Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Pinter-Wollman, Noa (Ed.)
    Abstract Circadian rhythms are ubiquitous in nature and endogenous circadian clocks drive the daily expression of many fitness-related behaviors. However, little is known about whether such traits are targets of selection imposed by natural enemies. In Hawaiian populations of the nocturnally active Pacific field cricket (Teleogryllus oceanicus), males sing to attract mates, yet sexually selected singing rhythms are also subject to natural selection from the acoustically orienting and deadly parasitoid fly, Ormia ochracea. Here, we use T. oceanicus to test whether singing rhythms are endogenous and scheduled by circadian clocks, making them possible targets of selection imposed by flies. We also develop a novel audio-to-circadian analysis pipeline, capable of extracting useful parameters from which to train machine learning algorithms and process large quantities of audio data. Singing rhythms fulfilled all criteria for endogenous circadian clock control, including being driven by photoschedule, self-sustained periodicity of approximately 24 h, and being robust to variation in temperature. Furthermore, singing rhythms varied across individuals, which might suggest genetic variation on which natural and sexual selection pressures can act. Sexual signals and ornaments are well-known targets of selection by natural enemies, but our findings indicate that the circadian timing of those traits’ expression may also determine fitness. 
    more » « less