skip to main content

Search for: All records

Creators/Authors contains: "Razeto, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SiPM-based readouts are becoming the standard for light detection in particle detectors given their superior resolution and ease of use with respect to vacuum tube photo-multipliers. However, the contributions of noise detection such as the dark rate, cross-talk, and after-pulsing (AP) may significantly impact their performance. In this work, we present the development of highly reflective single-phase argon chambers capable of displaying light yields up to 32 photo-electrons per keV, with approximately 12 being primary photo-electrons generated by the argon scintillation, while the rest are accounted by optical cross-talk. Furthermore, the presence of compound processes results in a generalized Fano factor larger than 2 already at an over-voltage of 5 V. Finally, we present a parametrization of the optical cross-talk for the FBK NUV-HD-Cryo SiPMs at 87 K that can be extended to future detectors with tailored optical simulations. 
    more » « less
    Free, publicly-accessible full text available May 16, 2024
  2. Free, publicly-accessible full text available November 1, 2024
  3. Abstract The scintillation time response of liquid argon has a key role in the discrimination of electronic backgrounds in dark matter search experiments. However, its extraordinary rejection power can be affected by various detector effects such as the delayed light emission of TetraPhenyl Butadiene, the most commonly used wavelength shifter, and the electric drift field applied in Time Projection Chambers. In this work, we characterized the TetraPhenyl Butadiene delayed response and the dependence of the pulse shape discrimination on the electric field, exploiting the data acquired with the ARIS, a small-scale single-phase liquid argon detector exposed to monochromatic neutron and gamma sources at the ALTO facility of IJC Lab in Orsay. 
    more » « less
  4. Abstract In this work we will document the design and the performances of a SiPM-based photo-detector with a surface area of 100 cm 2 conceived to operate as a replacement for PMTs. The signals from 94 SiPMs are summed up to produce an aggregated output that exhibits in liquid nitrogen a dark count rate (DCR) lower than 100 cps over the entire surface, a signal to noise ratio better than 13, and a timing resolution better than 5.5 ns. The module feeds about 360 mW at 5 V with a dynamic range in excess of 500 photo-electrons on a 100 Ω differential line. The unit can also operate at room temperature, at the cost of an increase of DCR to 10 8 cps. 
    more » « less
  5. Abstract

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$40tof liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$137Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$0νββof$${}^{136}$$136Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

    more » « less
  6. Abstract A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with polyethylene naphthalate (PEN) and the other with tetraphenyl butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be  39.4 $$\,\pm \,$$ ± 0.4(stat) $$\,\pm \,$$ ± 1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2 $$\,\pm \,$$ ± 5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors. 
    more » « less
  7. Abstract

    We present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model.

    more » « less