- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Readhead, Anthony_C_S (2)
-
Aller, Hugh_D (1)
-
Aller, Margo_F (1)
-
Chen, Liang (1)
-
Gu, Minfeng (1)
-
Gupta, Alok_C (1)
-
Hobbs, Richard (1)
-
Hodges, Mark_W (1)
-
Jorstad, Svetlana_G (1)
-
Kiehlmann, Sebastian (1)
-
Kushwaha, Pankaj (1)
-
Lamb, James_W (1)
-
Lähteenmäki, Anne (1)
-
Ravi, Vikram (1)
-
Tornikoski, Merja (1)
-
Valtonen, Mauri_J (1)
-
Woody, David_P (1)
-
Yuan, Qi (1)
-
Yurk, Nitika_Yadlapalli (1)
-
Zuo, Wenwen (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Though the time-domain millimeter sky is yet to be well characterized, the scarcity of millimeter observing resources in the world at present hampers progress toward it. In efforts to bolster the exploration of millimeter transients, we present the Stokes Polarization Radio Interferometer for Time-Domain Experiments (SPRITEly). Located at the Owens Valley Radio Observatory, SPRITEly is currently deployed as a two-element short-baseline 90 GHz interferometer uniquely focused on monitoring bright variable millimeter-continuum sources. We leverage two existing 10.4 m antennas and their existing receiver systems to begin, but we make significant upgrades to the back-end system during the commissioning process. With the ability to achieve rms noise of a few mJy, we plan to monitor known variable sources along with new nearby transients detected from optical surveys at high cadence, with the goal of producing well-sampled light curves. Interpreting these data in conjunction with multiwavelength observations stands to provide insight into the physical properties of the sources that produce transient millimeter emission. We present commissioning and early-science observations that demonstrate the performance of the instrument, including observations of the flaring BL Lac object S2 0109+22 and a periastron passage of the binary T Tauri system DQ Tau.more » « less
-
Zuo, Wenwen; Gupta, Alok_C; Gu, Minfeng; Valtonen, Mauri_J; Jorstad, Svetlana_G; Aller, Margo_F; Lähteenmäki, Anne; Kiehlmann, Sebastian; Kushwaha, Pankaj; Aller, Hugh_D; et al (, The Astrophysical Journal)Abstract Using nearly simultaneous radio, near-infrared, optical, and ultraviolet (UV) data collected since 2009, we constructed 106 spectral energy distributions (SEDs) of the blazar OJ 287. These SEDs are well fitted by a log-parabolic model. By classifying the data into “flare” and “quiescent” segments, we find that the median flux at the peak frequency of the SEDs during the flare segments is 0.37 ± 0.22 dex higher compared to the quiescent segments, while no significant differences are observed in the median values of the curvature parameterbor the peak frequency . A significant bluer-when-brighter trend is confirmed through the relation between theVmagnitude andB − Vcolor index, with this trend being stronger in the flare segments. Additionally, a significant anticorrelation is detected between andb, with a slope of 5.79 in the relation between 1/band , closer to the prediction from a statistical acceleration model than a stochastic acceleration interpretation, though a notable discrepancy persists. This discrepancy indicates that additional factors—such as deviations from idealized conditions or radiative contributions, such as the thermal emission from the accretion disk in the optical–UV range during quiescent states—may play a role in producing the observed steeper slope. Within the framework of the statistical acceleration mechanism, the lack of correlation between the change in the peak intensity and the change in the peak frequency suggests that the change in the electron energy distribution is unlikely to be responsible for the time-dependent SED changes. Instead, changes in Doppler boosting or magnetic fields may have a greater influence.more » « less