skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Reading, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The noncrossing partition poset associated to a Coxeter group $$W$$ and Coxeter element $$c$$ is the interval $$[1,c]_T$$ in the absolute order on $$W$$. We construct a new model of noncrossing partititions for $$W$$ of classical affine type, using planar diagrams. The model in type $$\afftype{A}$$ consists of noncrossing partitions of an annulus. In type~$$\afftype{C}$$, the model consists of symmetric noncrossing partitions of an annulus or noncrossing partitions of a disk with two orbifold points. Following the lead of McCammond and Sulway, we complete $$[1,c]_T$$ to a lattice by factoring the translations in $$[1,c]_T$$, but the combinatorics of the planar diagrams leads us to make different choices about how to factor. 
    more » « less