skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Realff, Matthew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Signal processing is critical to a myriad of biological phenomena (natural and engineered) that involve gene regulation. Biological signal processing can be achieved by way of allosteric transcription factors. In canonical regulatory systems (e.g., the lactose repressor), an INPUT signal results in the induction of a given transcription factor and objectively switches gene expression from an OFF state to an ON state. In such biological systems, to revert the gene expression back to the OFF state requires the aggressive dilution of the input signal, which can take 1 or more d to achieve in a typical biotic system. In this study, we present a class of engineered allosteric transcription factors capable of processing two-signal INPUTS, such that a sequence of INPUTS can rapidly transition gene expression between alternating OFF and ON states. Here, we present two fundamental biological signal processing filters, BANDPASS and BANDSTOP, that are regulated by D-fucose and isopropyl-β-D-1-thiogalactopyranoside. BANDPASS signal processing filters facilitate OFF–ON–OFF gene regulation. Whereas, BANDSTOP filters facilitate the antithetical gene regulation, ON–OFF–ON. Engineered signal processing filters can be directed to seven orthogonal promoters via adaptive modular DNA binding design. This collection of signal processing filters can be used in collaboration with our established transcriptional programming structure. Kinetic studies show that our collection of signal processing filters can switch between states of gene expression within a few minutes with minimal metabolic burden—representing a paradigm shift in general gene regulation. 
    more » « less
  2. null (Ed.)
    Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice—integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators—i.e., transcription factors and corresponding unit operations. In this review, we ( a) explore allosteric communication in the lactose repressor LacI topology, ( b) demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, ( c) illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and ( d) demonstrate how fundamental unit operations can be directed to form combinational logical operations. 
    more » « less
  3. null (Ed.)