skip to main content


Search for: All records

Creators/Authors contains: "Recio-Blanco, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Context. Rubidium is one of the few elements produced by the neutron capture s - and r -processes in almost equal proportions. Recently, a Rb deficiency ([Rb/Fe] < 0.0), amounting to a factor of about two with respect to the Sun, has been found in M dwarfs of near-solar metallicity. This stands in contrast to the close-to-solar [Sr, Zr/Fe] ratios derived in the same stars. This deficiency is difficult to understand from the point of view of observations and of nucleosynthesis. Aims. To test the reliability of this Rb deficiency, we study the Rb and Zr abundances in a sample of KM-type giant stars across a similar metallicity range, extracted from the AMBRE Project. Methods. We used high-resolution and high signal-to-noise spectra to derive Rb and Zr abundances in a sample of 54 bright giant stars with metallicities in the range of −0.6 ≲ [Fe/H] ≲ +0.4 dex, via spectral synthesis in both local and non-local thermodynamic equilibrium (LTE and NLTE, respectively). We also studied the impact of the Zeeman broadening in the profile of the Rb  I at λ 7800 Å line. Results. The LTE analysis also results in a Rb deficiency in giant stars, however, it is considerably lower than that obtained in M dwarfs. However, once NLTE corrections are performed, the [Rb/Fe] ratios are very close to solar (average −0.01 ± 0.09 dex) in the full metallicity range studied here. This stands in contrast to the value found for M dwarfs. The [Zr/Fe] ratios derived are in excellent agreement with those obtained in previous studies in FGK dwarf stars with a similar metallicity. We investigate the effect of gravitational settling and magnetic activity as possible causes of the Rb deficiency found in M dwarfs. Although the former phenomenon has a negligible impact on the surface Rb abundance, the presence of an average magnetic field with an intensity that is typical of that observed in M dwarfs may result in systematic Rb abundance underestimations if the Zeeman broadening is not considered in the spectral synthesis. This may explain the Rb deficiency in M dwarfs, but not fully. On the other hand, the new [Rb/Fe] and [Rb/Zr] versus [Fe/H] relationships can be explained when the Rb production by rotating massive stars and low-to-intermediate mass stars (these latter also producing Zr) are considered, without the need to deviate from the standard s -process nucleosynthesis in asymptotic giant branch stars, as suggested previously. 
    more » « less
  2. Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Aims: Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. Methods: As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. Results: The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 ± 0.82 M⊙ BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. Conclusions: The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way. Full Table B.1 and Table B.2 with Gaia epoch data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/L2 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce “motions”. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia . Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars. 
    more » « less