Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Environmental gradients can affect organic matter decay within and across wetlands and contribute to spatial heterogeneity in soil carbon stocks. We tested the sensitivity of decay rates to tidal flooding and soil depth in a minerogenic salt marsh using the tea bag index (TBI). Tea bags were buried at 10- and 50- cm along transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek. Plant and animal communities and soil properties were characterized once while replicate tea bags and porewaters were collected several times over one year. TBI decay rates were faster than prior litterbag studies in the same marsh, largely due to rapid green tea loss. Rooibos decay rates were comparable to natural marsh litter, potentially suggesting that is more useful as a standardized organic matter proxy than green tea. Decay was slowest at higher marsh elevations and not consistently related to other biotic (e.g., plants, crab burrows) and abiotic factors (e.g., porewater chemistry), indicating that local hydrology strongly affects organic matter loss rates. Tea BI rates were 32–118 % faster in the 10 cm horizon compared to 50 cm. Rates were fastest in the first three months and slowed 54–60 % at both depths between 3- and 6- months. Rates slowed further between 6- and 12- months but this was less dramatic at 10 cm (17 %) compared to 50 cm (50 %). Slower rates at depth and with time were unlikely due to the TBI stabilization factor, which was similar across depths and decreased from 6 to 12 months. Slower decay at 50 cm demonstrates that rates were constrained by the environmental conditions of this deeper horizon rather than the molecular composition of litter. Overall, these patterns suggest that hydrologic setting, which affects oxidant introduction and reactant removal and is often overlooked in marsh decomposition studies, may be a particularly important control on organic matter decay in the short term (3–12 months). transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek.more » « less
-
Many pathogens can cause cancer, but cancer itself does not normally act as an infectious agent. However, transmissible cancers have been found in a few cases in nature: in Tasmanian devils, dogs, and several bivalve species. The transmissible cancers in dogs and devils are known to spread through direct physical contact, but the exact route of transmission of bivalve transmissible neoplasia (BTN) has not yet been confirmed. It has been hypothesized that cancer cells from bivalves could be released by diseased animals and spread through the water column to infect/engraft into other animals. To test the feasibility of this proposed mechanism of transmission, we tested the ability of BTN cells from the soft-shell clam (Mya arenaria BTN, or MarBTN) to survive in artificial seawater. We found that MarBTN cells are highly sensitive to salinity, with acute toxicity at salinity levels lower than those found in the native marine environment. BTN cells also survive longer at lower temperatures, with 50% of cells surviving greater than 12 days in seawater at 10 °C, and more than 19 days at 4 °C. With one clam donor, living cells were observed for more than eight weeks at 4 °C. We also used qPCR of environmental DNA (eDNA) to detect the presence of MarBTN-specific DNA in the environment. We observed release of MarBTN-specific DNA into the water of laboratory aquaria containing highly MarBTN-diseased clams, and we detected MarBTN-specific DNA in seawater samples collected from MarBTN-endemic areas in Maine, although the copy numbers detected in environmental samples were much lower than those found in aquaria. Overall, these data show that MarBTN cells can survive well in seawater, and they are released into the water by diseased animals. These findings support the hypothesis that BTN is spread from animal-to-animal by free cells through seawater.more » « less