skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Redmiles, Elissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential privacy is a popular privacy-enhancing technology that has been deployed both by industry and government agencies. Unfortunately, existing explanations of differential privacy fail to set accurate privacy expectations for data subjects, which depend on the choice of deployment model. We design and evaluate new explanations of differential privacy for the local and central models, drawing inspiration from prior work explaining other privacy-enhancing technologies such as encryption. We reflect on the challenges in evaluating explanations and on the tradeoffs between qualitative and quantitative evaluation strategies. These reflections offer guidance for other researchers seeking to design and evaluate explanations of privacy-enhancing technologies. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. The Heilmeier Catechism consists of a set of questions that researchers and practitioners can consider when formulating research and applied engineering projects. In this article, we suggest explicitly asking who is included and who is left out of consideration. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available December 2, 2025
  4. Despite recent widespread deployment of differential privacy, relatively little is known about what users think of differential privacy. In this work, we seek to explore users' privacy expectations related to differential privacy. Specifically, we investigate (1) whether users care about the protections afforded by differential privacy, and (2) whether they are therefore more willing to share their data with differentially private systems. Further, we attempt to understand (3) users' privacy expectations of the differentially private systems they may encounter in practice and (4) their willingness to share data in such systems. To answer these questions, we use a series of rigorously conducted surveys (n=2424).   We find that users care about the kinds of information leaks against which differential privacy protects and are more willing to share their private information when the risks of these leaks are less likely to happen.  Additionally, we find that the ways in which differential privacy is described in-the-wild haphazardly set users' privacy expectations, which can be misleading depending on the deployment. We synthesize our results into a framework for understanding a user's willingness to share information with differentially private systems, which takes into account the interaction between the user's prior privacy concerns and how differential privacy is described. 
    more » « less
  5. Targeted advertising remains an important part of the free web browsing experience, where advertisers' targeting and personalization algorithms together find the most relevant audience for millions of ads every day. However, given the wide use of advertising, this also enables using ads as a vehicle for problematic content, such as scams or clickbait. Recent work that explores people's sentiments toward online ads, and the impacts of these ads on people's online experiences, has found evidence that online ads can indeed be problematic. Further, there is the potential for personalization to aid the delivery of such ads, even when the advertiser targets with low specificity. In this paper, we study Facebook--one of the internet's largest ad platforms--and investigate key gaps in our understanding of problematic online advertising: (a) What categories of ads do people find problematic? (b) Are there disparities in the distribution of problematic ads to viewers? and if so, (c) Who is responsible--advertisers or advertising platforms? To answer these questions, we empirically measure a diverse sample of user experiences with Facebook ads via a 3-month longitudinal panel. We categorize over 32,000 ads collected from this panel (n = 132); and survey participants' sentiments toward their own ads to identify four categories of problematic ads. Statistically modeling the distribution of problematic ads across demographics, we find that older people and minority groups are especially likely to be shown such ads. Further, given that 22% of problematic ads had no specific targeting from advertisers, we infer that ad delivery algorithms (advertising platforms themselves) played a significant role in the biased distribution of these ads. 
    more » « less