skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Redwing, Joan_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gallium nitride (GaN)-based high electron mobility transistors (HEMTs) are essential components in modern radio frequency power amplifiers. In order to improve both the device electrical and thermal performance (e.g., higher current density operation and better heat dissipation), researchers are introducing AlN into the GaN HEMT structure. The knowledge of thermal properties of the constituent layers, substrates, and interfaces is crucial for designing and optimizing GaN HEMTs that incorporate AlN into the device structure as the barrier layer, buffer layer, and/or the substrate material. This study employs a multi-frequency/spot-size time-domain thermoreflectance approach to measure the anisotropic thermal conductivity of (i) AlN and GaN epitaxial films, (ii) AlN and SiC substrates, and (iii) the thermal boundary conductance for GaN/AlN, AlN/SiC, and GaN/SiC interfaces (as a function of temperature) by characterizing GaN-on-SiC, GaN-on-AlN, and AlN-on-SiC epitaxial wafers. The thermal conductivity of both AlN and GaN films exhibits an anisotropy ratio of ∼1.3, where the in-plane thermal conductivity of a ∼1.35 μm thick high quality GaN layer (∼223 W m−1 K−1) is comparable to that of bulk GaN. A ∼1 μm thick AlN film grown by metalorganic chemical vapor deposition possesses a higher thermal conductivity than a thicker (∼1.4 μm) GaN film. The thermal boundary conductance values for a GaN/AlN interface (∼490 MW m-2 K−1) and AlN/SiC interface (∼470 MW m−2 K−1) are found to be higher than that of a GaN/SiC interface (∼305 MW m−2 K−1). This work provides thermophysical property data that are essential for optimizing the thermal design of AlN-incorporated GaN HEMT devices. 
    more » « less
  2. Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  3. Abstract Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next‐generation electronic, logic‐memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe2films with Re atoms via metal–organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe2is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n‐type behavior of WSe2. Transport characteristics of fabricated back‐gated field‐effect‐transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant‐level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics. 
    more » « less