skip to main content

Search for: All records

Creators/Authors contains: "Reem, Nathan T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR–Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS. 
    more » « less
  2. The plant cell wall (CW) is an outer cell skeleton that plays an important role in plant growth and protection against both biotic and abiotic stresses. Signals and molecules produced during host–pathogen interactions have been proven to be involved in plant stress responses initiating signal pathways. Based on our previous research findings, the present study explored the possibility of additively or synergistically increasing plant stress resistance by stacking beneficial genes. In order to prove our hypothesis, we generated transgenic Arabidopsis plants constitutively overexpressing three different Aspergillus nidulans CW-modifying enzymes: a xylan acetylesterase, a rhamnogalacturonan acetylesterase and a feruloylesterase. The two acetylesterases were expressed either together or in combination with the feruloylesterase to study the effect of CW polysaccharide deacetylation and deferuloylation on Arabidopsis defense reactions against a fungal pathogen, Botrytis cinerea. The transgenic Arabidopsis plants expressing two acetylesterases together showed higher CW deacetylation and increased resistance to B. cinerea in comparison to wild-type (WT) Col-0 and plants expressing single acetylesterases. While the expression of feruloylesterase alone compromised plant resistance, coexpression of feruloylesterase together with either one of the two acetylesterases restored plant resistance to the pathogen. These CW modifications induced several defense-related genes in uninfected healthy plants, confirming their impact on plant resistance. These results demonstrated that coexpression of complementary CW-modifying enzymes in different combinations have an additive effect on plant stress response by constitutively priming the plant defense pathways. These findings might be useful for generating valuable crops with higher protections against biotic stresses. 
    more » « less