skip to main content

Search for: All records

Creators/Authors contains: "Reese, Cassandra M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thiolactone chemistry has garnered significant attention as a powerful post-polymerization modification (PPM) route to mutlifunctional polymeric materials. Here, we apply this versatile chemistry to the fabrication of ultrathin, multifunctional polymer surfaces via aminolysis and thiol-mediated double modifications of thiolactone-containing polymer brushes. Polymer brush surfaces were synthesized via microwave-assisted surface-initiated polymerization of dl -homocysteine thiolactone acrylamide. Aminolysis and thiol-Michael double modifications of the thiolactone-functional brush were explored using both sequential and one-pot reactions with bromobenzyl amine and 1 H ,1 H -perfluoro- N -decyl acrylate. X-ray photoelectron spectroscopy and argon gas cluster ion sputter depth profiling enabled quantitative comparison of the sequential and one-pot PPM routes with regard to conversion and spatial distribution of functional groups immobilized throughout thickness of the brush. While one-pot conditions proved to be more effective in immobilizing the amine and acrylate within the brush, the sequential reaction enabled the fabrication of multifunctional, micropatterned brush surfaces using reactive microcontact printing. 
    more » « less
  2. We report on the use of visible light as the driving force for the intramolecular dimerization of pendant anthracene groups on a methacrylic polymer to induce the formation of single-chain nanoparticles (SCNPs). Using a 532 nm green laser light source and platinum octaethylporphyrin as a sensitizer, we first demonstrated the use of TTA-UC to dimerize monomeric anthracene, and subsequently applied this concept to dilute poly((methyl methacrylate)- stat -(anthracenyl methacrylate)) samples. A combination of triple-detection size-exclusion chromatography, atomic force microscopy, and UV-visible spectroscopy confirmed the formation of the SCNPs. This report pioneers the use of TTA-UC to drive photochemical reactions in polymeric systems, and showcases the potential for TTA-UC in the development of nanoobjects. 
    more » « less
  3. Post-polymerization modification (PPM) has been broadly employed to achieve functional polymer brush surfaces via immobilization of functional moieties on the brush using efficient organic tranformations. Here, we demonstrate the amine-anhydride reaction as a modular PPM route to functional brush surfaces using poly(styrene–maleic anhydride) (pSMA) copolymer brushes as a platform. The amine-anhydride reaction on pSMA surfaces proceeds to high conversions, with rapid kinetics, under ambient reaction conditions, and exploits a readily available library of functional amines. Using cystamine as a modifier, a convenient route to thiol-functionalized brushes was developed that enables sequential PPM modifications with a large library of alkenes using both base-catalyzed thiol-Michael and radical-mediated thiol–ene reactions. The high fidelity PPM reactions were demonstrated via the development of multifunctional, micropatterned brush surfaces. 
    more » « less
  4. Abstract

    The photocatalyst Zn(II)meso‐tetra(4‐sulfonatophenyl)porphyrin (ZnTPPS) is found to substantially accelerate visible‐light‐initiated (red, yellow, green light) single unit monomer insertion (SUMI) ofN,N‐dimethylacrylamide into the reversible addition–fragmentation chain transfer (RAFT) agent, 4‐((((2‐carboxyethyl)thio)carbonothioyl)thio)‐4‐cyanopentanoic acid (RAFT1), in aqueous solution. Thus, under irradiation with red (633 nm) or yellow (593 nm) light with 50 mpm (moles per million mole of monomer) ZnTPPS at 30 °C, the rate enhancement provided by photoinduced energy or electron transfer (PET) is ≈sevenfold over the rate of direct photoRAFT‐SUMI (without catalyst), which corresponds to achieving full and selective reaction in hours versus days. Importantly, the selectivity, as judged by the absence of oligomers, is retained. Under green light at similar power, higher rates of SUMI are also observed. However, the degree of enhancement provided by PET‐RAFT‐SUMI over direct photoRAFT‐SUMI as a function of catalyst concentration is less and some oligomers are formed.

    more » « less