skip to main content


Search for: All records

Creators/Authors contains: "Regan, Helen_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Variation in spatial predictions of species' ranges made by various models has been recognized as a significant source of uncertainty for modelling species distributions. Consensus approaches that combine the results of multiple models have been employed to reduce the uncertainty introduced by different algorithms. We evaluate how estimates of habitat suitability, projected using species distribution models (SDMs), varied among different consensus methods relative to the variation introduced by different global climate models (GCMs) and representative concentration pathways (RCPs) used for projection.

    Location

    California Floristic Province (California, US portion).

    Methods

    We modelled the current and future potential distributions of 82 terrestrial plant species, developing model predictions under different combinations of GCMs, RCPs, time periods, dispersal assumptions and SDM consensus methods commonly used to combine different species distribution modelling algorithms. We assessed how each of these factors contributed to the variability in future predictions of species habitat suitability change and aggregate measures of proportional change in species richness. We also related variability in species‐level habitat change to species' attributes.

    Results

    Assuming full dispersal capacity, the variability between habitat predictions made by different consensus methods was higher than the variability introduced by different RCPs and GCMs. The relationships between species' attributes and variability in future habitat predictions depended on the source of uncertainty and dispersal assumptions. However, species with small ranges or low prevalence tended to be associated with high variability in range change forecasts.

    Main Conclusions

    Our results support exploring multiple consensus approaches when considering changes in habitat suitability outside of species' current distributions, especially when projecting species with low prevalence and small range sizes, as these species tend to be of the greatest conservation concern yet produce highly variable model outputs. Differences in vulnerability between diverging greenhouse gas concentration scenarios are most readily observed for end‐of‐century time periods and within species' currently occupied habitats (no dispersal).

     
    more » « less
  2. Abstract

    This study analysed threats to federally and State‐listed endangered and threatened animal taxa in California, United States, and how threats varied by taxa, habitat use, spatial extent, severity, geographical region and endemic status using threat categories from the International Union for Conservation of Nature (IUCN) Red List Threats Classification Scheme and information from scientific literature and reports.

    A majority of the taxa evaluated were associated with freshwater habitats and were endemic to California. The most threatened taxonomic groups were fish, followed by mammals and birds. The number of threats was mostly evenly distributed across the State's three geographical regions (i.e., North, Central and South), and no single region had a disproportionately high number of endangered animal taxa.

    Freshwater taxa were the most affected in nearly every threat category, suggesting that freshwater taxa are more threatened than their terrestrial and marine counterparts. In descending order, the most prominent threats across all taxa were habitat loss, invasive species, climate change and altered hydrology. Threats identified as high severity also tended to have a high spatial extent and vice versa.

    This study shows that the numerous freshwater faunas in California are disproportionately affected by threats also found in other freshwater systems and Mediterranean‐climate regions, highlighting the scope of the freshwater biodiversity crisis in California. Managing priorities to target the most pervasive threats to endangered freshwater taxa documented in this study will help safeguard freshwater biodiversity against human threats in California and beyond.

     
    more » « less