Despite of important functions of strigolactones (SLs) and karrikins (KARs) in plant development, plant–parasite and plant–fungi interactions, their roles in soybean–rhizobia interaction remain elusive. SL/KAR signaling genes
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ahmad, Muhammad Zulfiqar (1)
-
Haq, Basir ul (1)
-
Li, Penghui (1)
-
Rehman, Naveed ur (1)
-
Wang, Junjie (1)
-
Yu, Shuwei (1)
-
Zeng, Zhixiong (1)
-
Zhao, Jian (1)
-
Zhou, Yuanze (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary GmMAX2a, GmD14s, andGmKAIs are activated by rhizobia infection. GmMAX2a restoredatmax2 root hair defects and soybean root hairs were changed inGmMAX2a overexpression (GmMAX2a ‐OE ) or knockdown (GmMAX2a ‐KD ) mutants.GmMAX2a ‐KD gave fewer, whereasGmMAX2a ‐OE produced more nodules than GUS hairy roots. Mutation ofGmMAX2a in itsKD orOE transgenic hairy roots affected the rhizobia infection‐induced increases in early nodulation gene expression. Both mutant hairy roots also displayed the altered auxin, jasmonate and abscisic acid levels, as further verified by transcriptomic analyses of their synthetic genes. Overexpression of an auxin synthetic geneGmYUC2a also affected SL and KAR signaling genes. GmMAX2a physically interacted with SL/KAR receptors GmD14s, GmKAIs, and GmD14Ls with different binding affinities, depending on variations in the critical amino acids, forming active D14/KAI‐SCFMAX2complexes. The knockdown mutant roots of the nodule‐specifically expressingGmKAI s andGmD14L s gave fewer nodules, with altered expression of several early nodulation genes. The expression levels ofGmKAI s, andGmD14L s were markedly changed inGmMAX2a mutant roots, so did their target repressor genesGmD53 s andGmSMAX1 s. Thus, SL and KAR signaling were involved in soybean–rhizobia interaction and nodulation partly through interactions with hormones, and this may explain the different effects of MXA2 orthologs on legume determinate and indeterminate nodulation. The study provides fresh insights into the roles of GmMAX2‐mediated SL/KAR signaling in soybean root hair and nodule formation.