Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 10, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Geostationary weather satellites collect high‐resolution data comprising a series of images. The Derived Motion Winds (DMW) Algorithm is commonly used to process these data and estimate atmospheric winds by tracking features in the images. However, the wind estimates from the DMW Algorithm are often missing and do not come with uncertainty measures. Also, the DMW Algorithm estimates can only be half‐integers, since the algorithm requires the original and shifted data to be at the same locations, in order to calculate the displacement vector between them. This motivates us to statistically model wind motions as a spatial process drifting in time. Using a covariance function that depends on spatial and temporal lags and a drift parameter to capture the wind speed and wind direction, we estimate the parameters by local maximum likelihood. Our method allows us to compute standard errors of the local estimates, enabling spatial smoothing of the estimates using a Gaussian kernel weighted by the inverses of the estimated variances. We conduct extensive simulation studies to determine the situations where our method performs well. The proposed method is applied to the GOES‐15 brightness temperature data over Colorado and reduces prediction error of brightness temperature compared to the DMW Algorithm.more » « less
-
Given the increasing prevalence of wildland fires in the Western US, there is a crit- ical need to develop tools to understand and accurately predict burn severity. We develop a novel machine learning model to predict post-fire burn severity using pre- fire remotely sensed data. Hydrological, ecological, and topographical variables col- lected from four regions of California — the site of the Kincade fire (2019), the CZU Lightning Complex fire (2020), the Windy fire (2021), and the KNP Fire (2021) — are used as predictors of the differenced normalized burn ratio. We hypothesize that a Super Learner (SL) algorithm that accounts for spatial autocorrelation using Vec- chia’s Gaussian approximation will accurately model burn severity. We use a cross- validation study to show that the spatial SL model can predict burn severity with reasonable classification accuracy, including high burn severity events. After fitting and verifying the performance of the SL model, we use interpretable machine learn- ing tools to determine the main drivers of severe burn damage, including greenness, elevation, and fire weather variables. These findings provide actionable insights that enable communities to strategize interventions, such as early fire detection systems, pre-fire season vegetation clearing activities, and resource allocation during emer- gency responses. When implemented, this model has the potential to minimize the loss of human life, property, resources, and ecosystems in California.more » « less