skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reid, Matthew C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 17, 2026
  2. NA (Ed.)
    Nature-based treatment technologies such as denitrifying woodchip bioreactors (WBRs) are employed to manage nitrogen (N) pollution from agricultural nonpoint sources. Due to variability in environmental conditions like temperature and discharge, it is challenging to achieve consistent treatment effectiveness with these passive systems. To improve nitrate (NO3–) load reductions in a field-scale WBR in New York State during cool spring weather, we designed a system for controlled exogenous carbon (C) dosing, allowing rates of C dosing to respond in real time to changing discharge and NO3– concentrations. Treatment efficiencies for NO3–, acetate mass balances, and other bioreactor properties were monitored from April 5 to June 10, 2023. Biostimulation with 7.5 mg C/L acetate (assuming complete mixing of injected acetate with bioreactor pore water) increased NO3– removal rates up to 5-fold compared to a model-based scenario of baseline bioreactor performance, and were as high as 0.4 mg NO3––N L–1 h–1 while water temperatures were <12 °C. Increasing acetate concentrations beyond 7.5 mg C/L did not confer a clear improvement in NO3– removal rates. Cumulative N load reductions increased from 11.3% under the baseline scenario without C dosing to 24.1% with C dosing. The mass ratio of metabolized C to additional N removal was 2.5:1, although the total dosed C/N mass ratio was 5.1:1 due to incomplete acetate utilization in the reactor. We found evidence that C dosing could enhance the future release of dissolved organic N (DON) and dissolved organic C related to biofilm sloughing. The expense of acetate, with a cost efficiency of 86 USD/kg N, was the main cost driver of the real-time control approach. Our results demonstrate the potential of real-time control of C dosing to meaningfully improve nonpoint source N removal during cool spring conditions but also highlight opportunities for methods to improve acetate utilization efficiencies in order to improve the overall cost-effectiveness of the approach. 
    more » « less
  3. Glass, Jennifer B. (Ed.)
    ABSTRACT Microbe-mediated transformations of arsenic (As) often require As to be taken up into cells prior to enzymatic reaction. Despite the importance of these microbial reactions for As speciation and toxicity, understanding of how As bioavailability and uptake are regulated by aspects of extracellular water chemistry, notably dissolved organic matter (DOM), remains limited. Whole-cell biosensors utilizing fluorescent proteins are increasingly used for high-throughput quantification of the bioavailable fraction of As in water. Here, we present a mathematical framework for interpreting the time series of biosensor fluorescence as a measure of As uptake kinetics, which we used to evaluate the effects of different forms of DOM on uptake of trivalent arsenite. We found that thiol-containing organic compounds significantly inhibited uptake of arsenite into cells, possibly through the formation of aqueous complexes between arsenite and thiol ligands. While there was no evidence for competitive interactions between arsenite and low-molecular-weight neutral molecules (urea, glycine, and glyceraldehyde) for uptake through the aquaglyceroporin channel GlpF, which mediates transport of arsenite across cell membranes, there was evidence that labile DOM fractions may inhibit arsenite uptake through a catabolite repression-like mechanism. The observation of significant inhibition of arsenite uptake at DOM/As ratios commonly encountered in wetland pore waters suggests that DOM may be an important control on the microbial uptake of arsenite in the environment, with aspects of DOM quality playing an important role in the extent of inhibition. IMPORTANCE The speciation and toxicity of arsenic in environments like rice paddy soils and groundwater aquifers are controlled by microbe-mediated reactions. These reactions often require As to be taken up into cells prior to enzymatic reaction, but there is limited understanding of how microbial arsenic uptake is affected by variations in water chemistry. In this study, we explored the effect of dissolved organic matter (DOM) quantity and quality on microbial As uptake, with a focus on the role of thiol functional groups that are well known to form aqueous complexes with arsenic. We developed a quantitative framework for interpreting fluorescence time series from whole-cell biosensors and used this technique to evaluate effects of DOM on the rates of microbial arsenic uptake. We show that thiol-containing compounds significantly decrease rates of As uptake into microbial cells at environmentally relevant DOM/As ratios, revealing the importance of DOM quality in regulating arsenic uptake, and subsequent biotransformation, in the environment. 
    more » « less
  4. Denitrification in woodchip bioreactors (WBRs) treating agricultural drainage and runoff is frequently carbon-limited due to the recalcitrance of carbon (C) in lignocellulosic woodchip biomass. Recent research has shown that redox fluctuations, achieved through periodic draining and re-flooding of WBRs, can increase nitrate removal rates by enhancing the release of labile C during oxic periods. While dying–rewetting (DRW) cycles appear to hold great promise for improving the performance of denitrifying WBRs, redox fluctuations in nitrogen-rich environments are commonly associated with enhanced emissions of the greenhouse gas nitrous oxide (N 2 O) due to inhibition of N 2 O reduction in microaerophilic conditions. Here, we evaluate the effects of oxic–anoxic cycling associated with DRW on the quantity and quality of C mobilized from woodchips, nitrate removal rates, and N 2 O accumulation in a complementary set of flow-through and batch laboratory bioreactors at 20 °C. Redox fluctuations significantly increased nitrate removal rates from 4.8–7.2 g N m −3 d −1 in a continuously saturated (CS) reactor to 9.8–11.2 g N m −3 d −1 24 h after a reactor is drained and re-saturated. Results support the theory that DRW conditions lead to faster NO 3 − removal rates by increasing mobilization of labile organic C from woodchips, with lower aromaticity in the dissolved C pool of oxic–anoxic reactors highlighting the importance of lignin breakdown to overall carbon release. There was no evidence for greater N 2 O accumulation, measured as N 2 O product yields, in the DRW reactors compared to continuously saturated reactors. We propose that greater organic C availability for N 2 O reducers following oxic periods outweighs the effect of microaerophilic inhibition of N 2 O reduction in controlling N 2 O dynamics. Implications of these findings for optimizing DRW cycling to enhance nitrate removal rates in denitrifying WBRs are discussed. 
    more » « less