Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Fluorination of azopyridine N-donors regulates the formation of either B ← N coordination adducts or a co-crystal with phenylboronic acid catechol ester. Specifically, the formation of B ← N adducts is promoted by azopyridines with up to four fluorines, while perfluorination affords a co-crystal via phenyl–perfluoropyridyl [π⋯πF] contacts. Electrostatic potential maps showed supramolecular bonding competition outcomes to be primarily determined by modulation of electron-donating capacity and π surfaces of azopyridine N-donors using fluorination.more » « lessFree, publicly-accessible full text available July 5, 2025
-
Abstract Methods to separate molecules (e.g., petrochemicals) are exceedingly important industrially. A common approach for separations is to crystallize a host molecule that either provides an enforced covalent cavity (intrinsic cavity) or packs inefficiently (extrinsic cavity). Here we report a self-assembled molecule with a shape highly biased to completely enclose space and, thereby, pack efficiently yet hosts and allows for the separation of BTEX hydrocarbons (i.e., benzene, toluene, ethylbenzene, xylenes). The host is held together by N → B bonds and forms a diboron assembly with a shape that conforms to a T-shaped pentomino. A T-pentomino is a polyomino, which is a plane figure that tiles a plane without cavities and holes, and we show the molecule to crystallize into one of six polymorphic structures for T-pentomino tiling. The separations occur at mild conditions while rejecting similarly shaped aromatics such as xylene isomers, thiophene, and styrene. Our observation on the structure and tiling of the molecular T-pentomino allows us to develop a theory on how novel synthetic molecules that mimic the structures and packing of polyominoes can be synthesized and—quite counterintuitively—developed into a system of hosts with cavities used for selective and useful separations.
-
Free, publicly-accessible full text available May 13, 2025
-
Abstract Achieving substantial anisotropic thermal expansion (TE) in solid‐state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two‐dimensional, area zero TE and colossal, positive linear TE (α=211 MK−1) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid‐state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid‐state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid‐state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid‐state materials.
-
The structure of the title compound, C30H42N4O2, has orthorhombic (Pbca) symmetry. This compound comprises a 4-amino-1,8-naphthalimide core with a 2,2,6,6-tetramethyl-4-piperidinyl substituent bonded to each nitrogen atom. The structure displays N—H...O hydrogen bonding. The structure exhibits disorder of the main molecule.more » « less