skip to main content


Search for: All records

Creators/Authors contains: "Reis, David A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials. 
    more » « less
  2. Abstract

    Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy.

     
    more » « less