skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Remijan, Anthony J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The interplay of the chemistry and physics that exists within astrochemically relevant sources can only be fully appreciated if we can gain a holistic understanding of their chemical inventories. Previous work by Lee et al. demonstrated the capabilities of simple regression models to reproduce the abundances of the chemical inventory of the Taurus Molecular Cloud 1 (TMC-1), as well as to provide abundance predictions for new candidate molecules. It remains to be seen, however, to what degree TMC-1 is a “unicorn” in astrochemistry, where the simplicity of its chemistry and physics readily facilitates characterization with simple machine learning models. Here we present an extension in chemical complexity to a heavily studied high-mass star-forming region: the Orion Kleinmann–Low (Orion KL) nebula. Unlike TMC-1, Orion KL is composed of several structurally distinct environments that differ chemically and kinematically, wherein the column densities of molecules between these components can have nonlinear correlations that cause the unexpected appearance or even lack of likely species in various environments. This proof-of-concept study used similar regression models sampled by Lee et al. to accurately reproduce the column densities from the XCLASS fitting program presented by Crockett et al.

     
    more » « less
  2. Abstract We present laboratory rotational spectroscopy of five isomers of cyanoindene (2-, 4-, 5-, 6-, and 7-cyanoindene) using a cavity Fourier transform microwave spectrometer operating between 6 and 40 GHz. Based on these measurements, we report the detection of 2-cyanoindene (1H-indene-2-carbonitrile; 2- C 9 H 7 CN ) in GOTHAM line survey observations of the dark molecular cloud TMC-1 using the Green Bank Telescope at centimeter wavelengths. Using a combination of Markov Chain Monte Carlo, spectral stacking, and matched filtering techniques, we find evidence for the presence of this molecule at the 6.3 σ level. This provides the first direct observation of the ratio of a cyano-substituted polycyclic aromatic hydrocarbon to its pure hydrocarbon counterpart, in this case indene, in the same source. We discuss the possible formation chemistry of this species, including why we have only detected one of the isomers in TMC-1. We then examine the overall hydrocarbon:CN-substituted ratio across this and other simpler species, as well as compare to those ratios predicted by astrochemical models. We conclude that while astrochemical models are not yet sufficiently accurate to reproduce absolute abundances of these species, they do a good job at predicting the ratios of hydrocarbon:CN-substituted species, further solidifying -CN tagged species as excellent proxies for their fully symmetric counterparts. 
    more » « less
  3. Abstract We report a systematic study of all known methyl carbon chains toward TMC-1 using the second data release of the GOTHAM survey, as well as a search for larger species. Using Markov Chain Monte Carlo simulations and spectral line stacking of over 30 rotational transitions, we report statistically significant emission from methylcyanotriacetylene (CH 3 C 7 N) at a confidence level of 4.6 σ , and use it to derive a column density of ∼10 11 cm −2 . We also searched for the related species, methyltetraacetylene (CH 3 C 8 H), and place upper limits on the column density of this molecule. By carrying out the above statistical analyses for all other previously detected methyl-terminated carbon chains that have emission lines in our survey, we assess the abundances, excitation conditions, and formation chemistry of methylpolyynes (CH 3 C 2 n H) and methylcyanopolyynes (CH 3 C 2 n -1 N) in TMC-1, and compare those with predictions from a chemical model. Based on our observed trends in column density and relative populations of the A and E nuclear spin isomers, we find that the methylpolyyne and methylcyanopolyyne families exhibit stark differences from one another, pointing to separate interstellar formation pathways, which is confirmed through gas–grain chemical modeling with nautilus . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)