Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.more » « lessFree, publicly-accessible full text available May 1, 2025
-
A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on tree-level RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general tree-level RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin.more » « less
-
A<sc>bstract</sc> Positivity bounds represent nontrivial limitations on effective field theories (EFTs) if those EFTs are to be completed into a Lorentz-invariant, causal, local, and unitary framework. While such positivity bounds have been applied in a wide array of physical contexts to obtain useful constraints, their application to inflationary EFTs is subtle since Lorentz invariance is spontaneously broken during cosmic inflation. One path forward is to employ aBreit parameterizationto ensure a crossing-symmetric and analytic S-matrix in theories with broken boosts. We extend this approach to a theory with multiple fields, and uncover a fundamental obstruction that arises unless all fields obey a dispersion relation that is approximately lightlike. We then apply the formalism to various classes of inflationary EFTs, with and without isocurvature perturbations, and employ this parameterization to derive new positivity bounds on such EFTs. For multifield inflation, we also consider bounds originating from the generalized optical theorem and demonstrate how these can give rise to stronger constraints on EFTs compared to constraints from traditional elastic positivity bounds alone. We compute various shapes of non-Gaussianity (NG), involving both adiabatic and isocurvature perturbations, and show how the observational parameter space controlling the strength of NG can be constrained by our bounds.more » « less