Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Analyzing queries from search engines and intelligent assistants is difficult. A key challenge is organizing queries into interpretable, context-preserving, representative, and flexible groups. We present structural templates, abstract queries that replace tokens with their linguistic feature forms, as a query grouping method. The templates allow analysts to create query groups with structural similarity at different granularities. We introduce Tempura, an interactive tool that lets analysts explore a query dataset with structural templates. Tempura summarizes a query dataset by selecting a representative subset of templates to show the query distribution. The tool also helps analysts navigate the template space by suggesting related templates likely to yield further explorations. Our user study shows that Tempura helps analysts examine the distribution of a query dataset, find labeling errors, and discover model error patterns and outliers.more » « less
-
Immersive data-driven storytelling, which uses interactive immersive visualizations to present insights from data, is a compelling use case for VR and AR environments. We present XRCreator, an authoring system to create immersive data-driven stories. The cross-platform nature of our React-inspired system architecture enables the collaboration among VR, AR, and web users, both in authoring and in experiencing immersive data-driven stories.more » « less
-
Abstract We investigated human understanding of different network visualizations in a large-scale online experiment. Three types of network visualizations were examined: node-link and two different sorting variants of matrix representations on a representative social network of either 20 or 50 nodes. Understanding of the network was quantified using task time and accuracy metrics on questions that were derived from an established task taxonomy. The sample size in our experiment was more than an order of magnitude larger (N = 600) than in previous research, leading to high statistical power and thus more precise estimation of detailed effects. Specifically, high statistical power allowed us to consider modern interaction capabilities as part of the evaluated visualizations, and to evaluate overall learning rates as well as ambient (implicit) learning. Findings indicate that participant understanding was best for the node-link visualization, with higher accuracy and faster task times than the two matrix visualizations. Analysis of participant learning indicated a large initial difference in task time between the node-link and matrix visualizations, with matrix performance steadily approaching that of the node-link visualization over the course of the experiment. This research is reproducible as the web-based module and results have been made available at: https://osf.io/qct84/ .more » « less
An official website of the United States government
